Modelling and Simulation of Photovoltaic Module with Buck-Boost Converter

C. Jena, Amruta Das, C.K. Panigrahi, M. Basu

Abstract - This paper presents a unique step-by-step procedure for the simulation of photovoltaic modules with Matlab/Simulink. The objective is to design & simulate a controller for the unlimited solar power drawn from the sun & produce a higher voltage output through the d.c. to d.c. (Buck-boost) converter. One-diode equivalent circuit is employed in order to investigate i-v and p-v characteristics of a typical 36W solar module. The proposed module is designed with different icons, dialogue box like simulink block libraries. This PV module is interfaced to the buck-boost converter and the performance has been studied by the matlab simulink.

Keywords - Photovoltaic (PV), Buck-Boost Converter, simulation of PV module, simulation results.

I. INTRODUCTION

Worldwide energy consumption has increased rapidly due to world population growth. Since amount of fossil energy source has no longer enough, renewable energy sources such as solar power, wind power, geothermal power, and fuel cell energy sources have been discussed in literature [3].

The photovoltaic (PV) cell is basically a p-n junction fabricated in a thin wafer of semiconductor. The solar energy is directly converted to electricity through photovoltaic effect. PV cell exhibits a nonlinear P-V and I-V characteristics which vary with cell temperature (T) and solar irradiance (S). Different equivalent circuit models of PV cell have been discussed in literature [3].

The fundamental element in solar power generation system is the solar cell or photovoltaic (PV) cell that MODELLING OF PV MODEL. The photovoltaic (PV) cell is basically a p-n junction fabricated in a thin wafer of semiconductor. The solar energy is directly converted to electricity through photovoltaic effect. PV cell exhibits a nonlinear P-V and I-V characteristics which vary with cell temperature (T) and solar irradiance (S). Different equivalent circuit models of PV cell have been discussed in literature [3].

The system performance can be optimized by connecting the pv model with buck-boost converter[4]. In this paper, a step-by-step procedure for simulating pv module with subsystem blocks, different icons and dialog in the same way as matlab simulink block libraries is developed. Section-1 represents pv model equivalent circuit and equations for \(I_{pv} \) and \(V_{pv} \). Section -2 represents the data sheet for 36W solar pv module for simulation. Section -3 represents the step-by-step procedure of pv module with simulation results and section -4 represents interfacing of pv module with buck-boost converter with simulation results.

II. MODELLING OF PV MODULE IN MATLAB

A Photovoltaic cell is a device used to convert solar radiation directly into electricity. It consists of two or more thin layers of semiconducting material, most commonly silicon. When the silicon is exposed to light, electrical charge are generated. A PV cell is usually represented by an electrical circuit equivalent one-diode model shown in fig.1

III. NOMENCLATURE

- \(V_{pv} \) is output voltage of a PV module (V)
- \(I_{pv} \) is output current of a PV module (A)
- \(T_{ref} \) is the reference temperature = 298 K
- \(T \) is the module operating temperature in Kelvin
- \(I_{ph} \) is the light generated current in a PV module (A)
- \(I_{O} \) is the PV module saturation current (A)
- \(A = B \) is an ideality factor = 1.6
- \(k \) is Boltzmann constant = 1.3805 × 10^(-23) J/K
- \(q \) is Electron charge = 1.6 × 10^(-19) C
- \(R_S \) is the series resistance of a PV module
- \(I_{sc} \) is the PV module short-circuit current at 25 °C and 1000W/m2 = 2.55A
- \(K_i \) is the short-circuit current temperature co-efficient
- \(I_{o} \) is the light generated current in a PV module (A)
- \(A = B \) is an ideality factor = 1.6
- \(k \) is Boltzmann constant = 1.3805 × 10^(-23) J/K
- \(q \) is Electron charge = 1.6 × 10^(-19) C
- \(R_S \) is the series resistance of a PV module
- \(I_{sc} \) is the PV module short-circuit current at 25 °C and 1000W/m2 = 2.55A
- \(K_i \) is the short-circuit current temperature co-efficient
- \(I_{o} \) is the light generated current in a PV module (A)
- \(A = B \) is an ideality factor = 1.6
- \(k \) is Boltzmann constant = 1.3805 × 10^(-23) J/K
- \(q \) is Electron charge = 1.6 × 10^(-19) C
- \(R_S \) is the series resistance of a PV module
- \(I_{sc} \) is the PV module short-circuit current at 25 °C and 1000W/m2 = 2.55A
- \(K_i \) is the short-circuit current temperature co-efficient
- \(I_{o} \) is the light generated current in a PV module (A)
- \(A = B \) is an ideality factor = 1.6
- \(k \) is Boltzmann constant = 1.3805 × 10^(-23) J/K
- \(q \) is Electron charge = 1.6 × 10^(-19) C
- \(R_S \) is the series resistance of a PV module
- \(I_{sc} \) is the PV module short-circuit current at 25 °C and 1000W/m2 = 2.55A
- \(K_i \) is the short-circuit current temperature co-efficient
- \(I_{o} \) is the light generated current in a PV module (A)
- \(A = B \) is an ideality factor = 1.6

IV. STEP BY STEP PROCEDURE FOR MATLAB MODELLING OF PV MODULE

The PV module has been modeled by using the above equations. The Subsystems has been modeled step-by-step by using those equations as shown below using MATLAB:
STEP-1 This model converts the module operating temperature given in degree Celsius to Kelvin.

STEP-2 Calculation for I_{ph}

STEP-3 Calculation for I_{rs}

STEP-4 Calculation for I_{s}

STEP-5 Calculation for N_AkT

STEP-6 Calculation for I_{pv}

STEP-7 Inter-connection of all six subsystems

V. SIMULATION MODEL OF PV MODULE

VI. CHARACTERISTICS OF PV MODULE

The simulation results of I-V curve and P-V curve of PV model for different solar irradiation and constant temperature.

Fig-3: P-V & V-I characteristics with varying irradiance & constant temperature.

From the above for different solar irradiation & constant temperature, it can be observe that current & power of the PV module increases with increasing solar irradiation. The simulation results of i-v curve and p-v curve of PV model for constant solar irradiation and different temperature are shown in Fig-4.
A buck boost converter is a DC-to-DC power converter with an output voltage either greater or smaller than its input voltage. It is a combination of the buck converter topology and a boost converter topology in cascade. The output to input conversion ratio is also a product of ratios in buck converter and the boost converter. The output voltage is controlled by controlling the switch-duty cycle. The term D is the duty ratio and defined as the ratio of the on time of the switch to the total switching period. This shows the output voltage to be higher or lower than the input voltage, based on the duty-ratio D.

VIII. INTERFACING OF PV MODULE WITH BUCK-BOOST CONVERTER

IX. SIMULATION RESULTS

Fig-6 PV module with buck-boost converter

Fig-7 Waveforms of output current and output voltage

X. CONCLUSION

This paper is presenting the integrated circuit of the simulated PV module circuit with Buck-boost converter. This will help to understand the PV characteristics, DC to DC converter topologies, component calculation, and circuit design. A step by step procedure of modelling a PV module is shown in the simulation model. The curve between P-V and V-I is shown for varying temperature and varying irradiance. It was then interfaced with a buck-boost converter. The results obtained from the model show excellent correspondence to manufacturer’s curve. This paper provides a clear & concise understanding of the I-V and P-V characterises of PV module which will serve as the model for researchers in the field of PV modelling.
REFERENCES

(12) DEVELOPMENT OF A DC-DC BUCK BOOST CONVERTER USING FUZZY LOGIC CONTROL. FATHI SHABAN JABER. Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia M.sc Thesis.
