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Abstract—The capability of a system to continuously deliver 
services in compliance with the given requirements in the 
presence of failures and other undersigned events, is a property of 
protracted network. An easy solution to provide good quality of 
service is to build a network with enough capacity.  A strong 
network should have a important property  that the  network 
should be designed in such away that it must take no time or very 
small time to recover from a big disaster. The objective of this 
paper  is to provide an overview of network connectivity in relation 
to network protection design. In this paper we   aim to introduce 
and analyze the advantages and disadvantages of methods and 
algorithms for searching good network connectivity as well as sets 
of disjoint and distinct paths for protection design. Here we will 
make 2-connected network to improve network performance. 
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I. INTRODUCTION 

Networks are everywhere. A network, which we can 
informally define as large collection of interconnected nodes. 
A node can be anything: a person, an organization, a 
computer, a biological cell, and so forth. Interconnected 
means that two nodes may be linked, for example, because 
two people know each other, two organizations exchange 
goods, two computers have a cable connecting the two of 
them, or because two neurons are connected by means of a 
synapses for passing signals. And a  network  is said to be 
protracted if all of the demands can be met under the failure 
of any one of its links. Apart from the lot of traffic, there can 
be severe consequences when a physical link fails. Network 
failure which may be  caused by dig-ups, vehicle crashes, 
human-errors ,system malfunctions, fire ,rodents ,sabotage, 
natural disasters( e.g. flood, earthquakes, lightning, storms ), 
and some other factors have occurred quite frequently and 
sometimes with unpredictable consequence .An easy solution  
to provide good quality of service is to build a network with 
enough capacity for whatever traffic will be thrown at it. But 
the trouble with this solution is that it is expensive. It is 
basically solving a problem by throwing money on it. Quality 
of service mechanisms ensures how to reserve resources to 
guarantee performance. In this paper, we will use the term  
protracted  networks  to refer to networks that, when a 
component fails, may “alive” by finding alternative paths that 
circumvent the failed component. Three ingredients are 
needed to make a protracted network: 

(1)Strong network connectivity: There we mean that network 
should be as invulnerable to destruction of individual stations 
and individual lines as possible.   

(2) Network augmentation: , that is, new links may need to 
be added to strengthen  the connectivity of  a network. 
 
 
 
Revised Version Manuscript Received on June 04, 2015. 

Dr. Varsha Gautam, Department of Mathematics, JRE Group of 
Institutions, Greater Noida, India. 

(3) Path cover: is a procedure to find alternative paths in case 
of failures. Above mentioned   points will be explained in the 
following sections. 

A . Connectivity:  In all the graphs we have considered so far, 
each vertex ‘v’ could be reached from any other vertex ‘w’ in 
the sense that we could indicate a chain of adjacent vertices 
from ‘v’ to  ‘w’. In this section, we will take a closer look at 
this important concept of connectivity. A network is often 
represented as a graph G (V,E), where V is the set of nodes 
(which for instance represent routers or stations) and E is the 
set of L links (which for instance represent optical fiber lines 
or radio channels or simply edges). Links may be 
characterized by weights representing for instance their 
capacity, delay, length, cost, and/or failure probability. A 
graph is said to be connected if there exists a path between 
each pair of nodes in the graph, else the graph is said to be 
disconnected. In other words, the physical topology must 
remain connected under the failure scenario. For example, to 
cope with single link failures in the network, the physical 
topology must be at least 2-connected, meaning that there is at 
least 2 link-disjoint paths between any two nodes in the 
network. Generally, to protect against the failure of any set of 
k links in a network, the physical topology of that network 
must be (k+1)-connected. Depending on whether these paths 
are node or link disjoint, we may discriminate between node 
and link connectivity. The link connectivity λ(G) of a graph G 
is the smallest number of links whose removal disconnects G. 
 Correspondingly, the node connectivity κ(G) of a graph is the 
smallest number of nodes whose removal disconnects G. In 
1927, Menger provided a theorem [1]—in German— that 
could be interpreted as follows: 
Theorem 1 (Menger’s theorem). The maximum number of 
link /node-disjoint s-t paths is equal to the minimum number 
of links/nodes whose removal disconnects t from s. 

1. Suppose the removal of F⊆ E disconnects t from s, andF  

= k 
2. All s-t paths use at least one edge of F. hence the number of 
edge disjoint paths  is at most k. 
 

 
Fig. 1:  Maximum edge disjoint path between two vertices 
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The notion of connectivity is important, notably when 
considering the robustness of networks. Robustness in this 
context means how well the network stays connected when we 
remove vertices or edges. For example, as we   know that   the 
Internet can be viewed as a (huge) graph in which routers 
form the vertices and communication links between routers 
the edges. In a formal sense, the Internet is connected. 
However, if it were possible to partition the network into 
multiple components by removing only a single vertex (i.e., 
router) or edge (i.e., communication link), we could hardly 
claim the internet to be robust. In fact, it is extremely 
important for networks such as the internet to be able to 
sustain serious attacks and failures by which routers and links 
are brought down, such that connectivity is still guaranteed. 

B.  Network Augmentation: All customer use capacity in the 
existing network proportional to their demand. In some cases 
the network requires immediate upgrading, and in other  
cases, this happens later on. The goal of this improvement 
process is to maximize the  connectivity of the networks . One 
option for improving a network configuration is by 
introducing additional link resources from a connectivity 
standpoint. 

C. Path cover: A physical topology is considered to be 
protracted if it can cope with any single failure of network 
components by rerouting those connections affected by the 
failures through alternative paths. Clearly, this requires some 
resource redundancies in the   network. So we provide the 
ability to switch over in subsequent   time from a failed 
primary path to an alternate path. This alternate path can 
either be configured to protect against a link or node failure. 
Using the graph theory terminologies, a protracted network 
must be at-least 2-connected or a biconnected graph, meaning 
that there is  at least 2-link disjoint paths between any two 
nodes in the network. 

II. GRAPH THEORETIC APPROACH TO 
ESTABLISH NETWORK PROTECTION DESIGN 

In Section I. A, we indicated that  Menger’s theorem  implies 
that finding a minimum cut corresponds to finding the 
connectivity of a network. In this section, we will look further 
at finding cuts in a network. 

Definitions: 

1. Edge or link cut: A link cut refers to a set of links whose 
removal separates the graph into two disjoint sub graphs , and 
where all links in the removed cut-set have an end-point in 
both  the sub graphs. The two sub graphs need not be 
connected themselves. 

2. Vertex or node cut:  A node cut refers to a set of nodes 
whose removal separates the graph into two disjoint sub 
graphs, and where all nodes in the removed cut-set have at 
least one adjacent link to both sub graphs. 

3.  Minimum link/node cut: A minimum cut is a cut whose 
cardinality is not larger than that of any other cut in the 
network. Definitions for a cut also have a variant in which a 
source node s and a terminating node t need to be separated. 

4. s-t cut:  An s-t cut refers to a cut that separates two nodes s 
and t in the graph such that both belong to different sub 
graphs. Often, when referring to a cut, a link cut is meant. In 

the remainder   of this paper, we will use the same convention 
and only specify the type of cut for node cuts. 

5.  Maximum cut: A maximum cut is a cut whose cardinality 
is not exceeded by that of any other cut in the network. 
Practically, different traffic requirements over a network 
would require different connectivity between nodes. Some 
traffic demands may require no protection, or may only need 
to be carried when possible. In contrast, other traffic demands 
may ask for a full protection against either   single-link failure, 
dual-link failures or other types of failure. Hence, the required 
connectivity  between nodes would be different for these 
varied protection requirements. The service quality of a 
network can be maintained by designing the network in such a 
way that it works under network failure. Deterministic 
techniques usually involve the evaluation of certain graph 
theoretic concepts associated with the network. Boesch & 
Frisch [2] defined a measure of network vulnerability, viz, the 
number of elements in the smallest cut-vertex set.  The 
vulnerability measures relation of  the connectivity level of a 
network to the number of node and/or link disjoint paths 
between node pairs in the network. Node disjoint paths have 
no common nodes except the source and destination nodes, 
while link disjoint paths contain no common links. Instead, it 
will consider the set of specific (or predetermined) failures. 
For example, protection design against single link failures 
needs to determine the recovery routes for services so that 
they can   maintain their services under the failure of any 
single link in the network. To do that, the network 
connectivity must provide at least 2 disjoint paths between 
any source and destination nodes. The term “disjoint” here is 
with respect to the failure scenario, meaning that the 
“disjoint” paths must not suffer from the same failure. For 
example, for single link failures, the 2 paths must be 
link-disjoint. Similarly, for single node failures, the 2 paths 
must be node-disjoint. This section presents the general 
requirement for network connectivity in which the network 
can at least be protected against any single failure scenario, 
e.g. the failure of any single link or node of the network. In 
this case, the physical topology of the network must be 
2-connected. Further we know that a graph is connected if for 
any two vertices x, y ∈  V (G), there is a path whose 
endpoints are x and y. A connected graph G is called 
2-connected, if for every vertex x  ∈ V (G), G − x is 
connected. Also it is important to notice that , node-disjoint 
paths are always link-disjoint. A graph which provides at least 
2 link-disjoint paths between any two nodes is 2-connected. 
With stronger connectivity, a bi connected graph is able to 
provide at least 2 node-disjoint paths between any two nodes. 
Generally, a network must provide at least K link-disjoint 
paths between any node-pairs to be able to protect against 
simultaneous failure of K − 1 links. The graph of such 
networks is said to be K-connected. Establishing the physical 
topology of a protracted large networks is not a trivial task. 
Some techniques for assessing physical survivability such as 
the cut set method can not deal with large size networks [1], 
[2]. A fast technique for finding bi connected components of a 
graph and testing the network for node-/link-bridges, 
presented in [3], does not provide any further information, 
such as identifying the fundamental cycles within the network. 
This paper presents an alternative technique, based on graph 
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theory, for evaluating the physical survivability of networks. 
This technique can deal with network sizes of many thousand 
nodes, with computational times which are comparable with 
the bi connected components method, while   providing more 
information about the susceptibility of a network to individual 
link and node failures. So, this paper will mainly discuss 
network connectivity which supports single link and single 
node failures, the minimum requirement, known as 
2-connected and bi connected. 

III.   NETWORK DESIGN 

This section presents the procedures for designing a 
protracted network   against single-link failures which is one 
of the most common failure scenarios occurring in practical 
networks. As discussed, the physical topology of a network 
can only be protracted under single-link failures if and only if 
it is 2-connected. The concept of protracted networks is more 
complex than the concept of connectivity in graph theory. In 
addition, efficient automation algorithms based on graph 
theory can help designers to reduce the computational time 
and avoid human errors. This section presents techniques for 
evaluating the physical topology for protracted   networks. 
Firstly, we outline and analyze the strengths and weaknesses 
of a popular method, namely the cut-set method. Then, we 
introduce   technique  that can deal with network sizes of 
many thousand nodes [4] , which  uses properties of 
2-connected graphs. 

A. Protraction  through  cut-sets 
A network is protracted if the size of every cut-set of the 
network is equal to or larger than 2. At a glance, this definition 
leads to a view that the network has nodal-degree of two, 
meaning that every node in the network is connected to at 
least two other nodes. Since every node is connected to at 
least two other nodes in the network, on the surface this 
property seems to be able to offer two disjoint paths between 
any two nodes in the network. In fact, this is a misconception. 
If a network is 2-connected then the nodal degree of all nodes 
in the network is equal to or larger than 2. The reverse does 
not hold, however, in that a network in which the nodal degree 
of all its nodes equal to or larger than 2 is not always 
2-connected. The topology in Fig. 2 illustrates this concept.  

 
Fig. 2: Failure of nodal degree technique 

In the figure we can see that path (3 − 1). It is a bridge that 
connects two subsets of network nodes X = {3,6,7,8} and Y = 
{1,2,4,5}. As a result, all paths between nodes x ∈  X and y ∈  
Y must share the same path (3 − 1). Hence, although all nodes 
in this network have a nodal degree equal to or larger than 2, it 
is not a 2-connected network. Therefore, all algorithms for 
verification of network survivability based on node-degree of 
two may yield undesirable and inaccurate results and hence 

are not reliable. The cut-set assumption described below has 
been preferred for the accuracy of network survivability 
verification. Let G = (V, E) be a network topology. A cut in G 
is a partition of V into parts S and S  = V \ S. Each cut defines 
a set of edges consisting of those edges in E with one 
end-point in S and the other in S . This edge set is referred as 

the cut-set CS(S, V \ S) associated with the cut  SVS \, . 

Let |CS(S,V \ S)| be the size of the cut-set, being the number of 
links between S and V \ S. Thus, according to the cut-set 
assumption, a network is 2-connected, if |CS(S,V \ S)| ≥ 2, 

∀ S ⊂  V. If S is a subset of only a single node in the network, 
then the cut-set assumption is essentially the same as the 
node-degree assumption. Since the cut-set assumption is 
related the number of links connected between two subsets of 
a cut, it can assure the network to offer link-disjoint paths, but 
not node-disjoint paths. Here we have a related theorem by 
Menger which determines the connectivity of a network by 
examining its cut sets. 
Theorem 2: A topology with the set of vertices (nodes)N and 
the set of edges (links) E is 2-connected  if and only if every 

non-trivial cut  SVS \,  has a corresponding cutest of size 

greater than or equal to 2. 
Proof: In other words, a configuration of the network that 
satisfies the condition of the cut-set assumption can provide at 
least one link-disjoint path-pair between any distinct pair of 
source node and destination node. The implementation of the 
cut-set assumption is not complex but its computational time 
for large scale networks is its biggest disadvantage. The 
number of cut-sets increases exponentially with the number of 
network nodes and is calculated as in [3]: 

Ncut set = 2|V| − 2 

where Ncut set is the number of cut-sets in the network, and |V| is 
the number of  nodes. The number of cut-sets doubles with an 
increase of one node in the network.  For instance, Ncut set in a 
network of 20 nodes is over 1 million; and it is over 32 million 
with |V| = 25; which is 32(= 25) times larger than |V| = 20; and 
the number of  cut-sets in the networks of |V| = 30 nodes is up 
to 1 billion cut-sets. So, the cut-set technique becomes 
intractable even with moderate scale networks (20 ≤ |V| ≤ 30). 
In summary, the node-degree assumption is simple but not 
reliable for the verification of network survivability. 
Meanwhile, the cut-set assumption is only applicable for 
link-survivable networks, and it is intractable with large scale 
networks. The node-degree assumption cannot verify any type 
of physical topology that has potential to support protracted 
network (namely 2-connected and bi connected networks) 
whereas the cut-set assumption can verify the survivability of 
a network that is 2-connected but cannot identify exactly a 
2-connected topology or verify a bi connected topology. 
Next, we propose an approach that can classify network 
topologies, and determine if they are unconnected, 
(1−)connected, 2-connected or bi connected. 

A.  Protracted through 2-connected 
From Theorem 2, it can be deduced that the cut sets of a cycle 
always have a size of 2. Furthermore, a 2-connected graph can 
be easily constructed from simple cycles [5]. The following 
proposition implies a method for constructing such graph. 
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Proposition 1: A graph is 2-connected if and only if it can 
be constructed from a cycle by successively adding H-paths 
to  graph  H already constructed. 
Proof:  Cleary, every graph constructed as proposed is 2- 
connected. Conversely, let G be a 2-connected graph, then 
G contains a cycle, and a sub graph H is constructible, as 
evident  in Fig 3. 
 

 
Fig. 3: Construction of 2-connected graph 

Any edge x, y ∈  E(G)\E(H) with x, y∈   H defines a  H-path. 
Then, H is an induced sub-graph of G.  If H ≠ G, then by the 
connectedness of G, there is an edge  vw with v ∈  G − H and 
w ∈  H . As G is 2-connected, G − w has a v −H path P. Then 
wvP is a H-path in G, and H ∪  wvP is a constructible 
sub-graph of G. 

IV. AN APPROACH TO   CLASSIFY NETWORK 
TOPOLOGIES 

Assume that G′ and G′′ are two blocks of graph G. From 
Proposition 1, we can deduce the connectivity of graph G 
depending on the relation between G′ and G′′, as described 
below: 
1) If G′ and G′′ have at least 2 common vertices, then G is a 
2-connected graph with no cut vertex (i.e. node  bridge) or cut 
edge (i.e. link bridge), i.e. G is a bi connected graph. 
2) If G′ and G′′ only have one common vertex, then G is a 
2-connected graph with a cut vertex which is the common 
vertex. 
3) If G′ and G′′ are separated by a cut edge, then G is not a 
2-connected graph, and the cut edge cannot be protected. 
4) If G′ and G′′ have no common links or nodes, then G is not 
a 2-connected graph, and therefore it is not survivable. 
Based on the above discussion, we can use the relationship 
between networks’ cycles or 2-connected graphs to verify the 
survivability of its physical topology. An undirected graph is 
thus seen as the combination of all the fundamental cycles. 
Using Alg. 1, these fundamental cycles can be found from a 
spanning tree {V, T} of a graph G = {V,E} (eg. the spanning 
tree highlighted by thick lines in Fig. 4). 
 
 
Algorithm 1 Finding cycle 
Input : A tree T and an edge e whose end-nodes is in T; 
Output: A cycle P formed by T and e; 
init 
(s, d) ← end-nodes of e; 

queue ← [node.s, node.P ]; check ← 0; 
while check = = 0&queue ≠ Φ do 
   [v] ← head(queue); queue ← queue−{head(queue)}; 
    if v.s == d then 
check = 1; P ← v.P 
else 
   for all vk is neighbour of v.s; do 
     node.s ← vk; node.P ← P ∪  vk; 
push node into queue; 
           end for 
        end if 
end while 
 
 

 
Fig. 4: Spanning tree (With thick lines) in a graph G 

Any set of cycles found from the spanning tree can be used to 
verify how well the network is protracted.. An algorithm for 
finding a set of cycles through spanning treeof a graph is 
represented in Alg. 1. An efficient method for finding 
fundamental cycles of a graph, referred to as Paton’s 
algorithm, is outlined in [6]. If a graph is 2-connected, then 
each vertex of the graph will be at least on one of the cycles 
resulting from Alg. 1. Hence, such set of cycles is sufficient to 
verify that how much this network is protracted. 

 
(a) An arbitrary physical structure 

 
(b) The spanning tree 
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(c ) Protracted network outcomes 

Fig. 5: An illustrative example 

Here, we shall give an example of how our approach works 
over an arbitrary physical topology G as shown in Fig. 5(a), 
with the set of nodes V and edges E. Since this topology is an 
connected topology, the first step results in a tree T, being a 
sub graph of G, and , as shown in Fig. 5(b). T  has a set of 
nodes VT and edges ET , where VT = V , and ET = E − {(a, c), 
(c, e), (c, f), (h, i)}. The spanning tree can be determined using 
Prim’s algorithm or Kruskal’s algorithm. Next, a set of cycles 
is found using Alg. 1. In our example, this consists of 4 cycles 
{Γ1, Γ2, Γ3, Γ4 } as shown in Fig. 5(c). The input of the second 
step is  the spanning tree T of Fig. 5(b), and the output is 
shown in Fig. 5(c). Note that topology G contains 3 maximal 
survivable-bases, namely as S1 = { Γ1} S2 = { Γ2, Γ3}, and S3 = 
{ Γ4}. S1 and S2 share node ‘c’ in graph G, hence node ‘c’ is a 
cutvertex (or node-bridge). There are 2  link-bridges which 
are (a − g) and , (j − k) . Node  ‘k’  which is  not part of any 
2-connected block is  referred to as single node. 

V. CONCLUSION 

In this paper, we have discussed the connectivity of the 
physical topology to support the problem of designing 
multiple quality of protections.  Here we have presented an  
approach for  evaluating the physical topology of large 
protracted networks. The computational efficiency of this 
approach, when dealing with large networks, is comparable to 
the bi connected components approach in [3]. This technique 
is also capable of providing all the distinct fundamental cycles 
of the network, if required. 2-connected graph theorem can be 
used to identify the weak nodes/links of a given large size 
network much faster than some other techniques such as ‘cut 
set’. Furthermore, it also provides information about all 
distinct cycles in the network, useful for the next phase of 
network planning, which cannot be provided by any other 
technique. 
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