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Abstract—This paper proposes the state feedback Sliding Mode 

Control (SMC) approach in order to control the nonlinear system. 
A nonlinear model of  two degrees of freedom (DOF) of an Active 
Magnetic Bearing(AMBs) obtained using Lagrange’s equation is 
introduced. The SMC approach by using linear matrix inequality 
(LMI) technique is proposed not only to out-perform the 
proportional integral differential (PID) control but also to show 
some advantages. Firstly, a robust stabilization problem for a 
class of nonlinear systems is considered. Secondly, the 
conservatism of PID approach is reduced, fast response and reject 
disturbance of the system is also enhanced in this study. Finally, 
the simulation result has been obtained and compared with the 
conventional PID control. website. 
 

Keywords—state feedback control, two DOF for AMB, sliding 
mode control.  

I.  INTRODUCTION 

  AMBs have been successfully used in various applications 

for several decades. They show great abilities to work under 
extreme conditions, such as vacuum, high rotation speed or at 
high temperature, enable non-contact operation and can 
guarantee a good performance of the system at high speed 
without lubrication [1]-[2], [4]-[7]. However, modeling and 
control of AMBs have still been challenging problems, since 
AMBs have unstable behavior and are nonlinear mechatronic 
systems. Most of the control design approaches for AMBs are 
based on the linearized model about a nominal operating 
point. The behavior of the linear model is acceptable when the 
operating point is close enough to the linearized point [4]-[8]. 
In order to ensure the system’s performance in a wide range of 
working conditions, a nonlinear model should be considered 
in controller design. 

In modern industrial engineering, SMC has become the 
most popular strategy to control practical systems. Moreover, 
SMCs have many advanced control techniques that use a 
dynamic model of the system to give stability, fast response 
and robustness [4]-[6], but all of them are based on the 
linearized model. In this paper, two degrees of freedom 
(DOF) is introduced. A nonlinear electromechanical model of 
this system is also derived from Lagrange’s equation by using 
symbolic computation package such as Maple®. The SMC 
approach is presented and a control strategy is applied to 
regulate the nonlinear system. In addition, the sliding surface 
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is designed in term of LMIs to guarantee the stability of 
system dynamics in sliding mode. 

Finally, numerical simulation results are presented to 
demonstrate the dynamic behavior of the system, and the 
performance of SMC for this machine is compared with 
classical PID control.Use italics for emphasis; do not 
underline.  

II.  M ATHEMATICAL ANALYSIS  

A. Electromechanical model 

In this section, a model of AMB with a single mechanical 
degree of freedom Fig. 2.1 is introduced to illustrate the 
Lagrange’s equation approach for an electromechanical 
system [3].  
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Fig. 2.1 Single DOF of AMB 
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Energy contributions of this system are showed in Equation 
(1).  

Where: 

- MKe , MV   are the kinetic and potential energy of 

mechanical part. 

- EKe  and EV  are the kinetic and potential energy of 

electrical part. 

- The electrical charge in each coil, ,x xq q+ −  is 

generalized coordinates of electrical part. 

- x  is the displacement of the rotor.  

- ,x xL L+ −  are coil inductances.  

  The relation of coil inductance with air gap T  and the coil 
characterizing parameters is described in Equation (2). 
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Where: 0,  , , , , :T A N R Kµ   Air permeability, nominal air 

gap, cross section area, number of coils, coil resistance and 
sensor gain. 
 The dissipation of copper losses in the coils is 

2 21 1

2 2x xP Rq Rq+ −= +ɺ ɺ  (3) 

The dynamic equation of single DOF AMB model can be 
derived from Lagrange’s equation 

d P
Q

dt s s s

∂ ∂ ∂  − + = ∂ ∂ ∂ ɺ ɺ

L L
 (4) 

Where s is the generalized coordinate vector 

, , , , ,  ,
T

x x y ys q q q q x x+ − + − =  ɺ  (5) 

Q  is a vector of generalized external forces (control input 

voltage and mechanical force) 

Q , , , ,  ,0 ,
T

x x y y xu u u u F+ − + − =    (6) 

and L  is the Lagrangian function 

M E M EKe Ke V V= + − −L  (7) 

B. Two DoF of the AMB 

  

Fig. 2.2 Two DOFs model for AMBs 

We applied the Equation (4) and (7), the Equation of 
motion of the system can be derived in a standard  nonlinear 
form of differential Equation as 

stateKs J=ɺ  (8) 

where  

[ ]1 2 3 4          
T

states i i i i x x y y= ɺ ɺ and 

1 2 3 4       0   0 
T

x yJ u u u u F F =    
and 8x8K R∈  is the inertial matrix and 8x1J R∈ is the vector 
of nonlinear function. These Equation are solved in Jacobian 
by using Maple 17 software.

 
C. Parameters of two DoF of the AMB 

The physical parameters of this two DOF of AMB model 
for simulation are given follow tables. 

Table 1: Rotor parameters 

Parameters Symbol Value Unit 

Mass m 5.31 
Kg

 

Bias current i0
 0.45 A 

Resistor of coils R 0.225 
Ω

 

Air permeability 
µ0

 4πe-3 
H/m

 

Coil resistance N 150 
m

 

III.  CONTROL DESIGN AND SIMULATION RESULT  

A. Sliding surface design 

In this section, two degrees of freedom of the AMB is 
controlled via SMC approach. The type of model being 
considered in this section is discrete and linear time-invariant 
(LTI) the Equation (8)and the state-space form given by 

state states As Bu+Df= +ɺ  (9) 

Where 8x8A R∈ , 8x4B R∈ are system matries and is 

disturbance matrix 8x4D R∈  with [ ]sin  + cos 2f t tπ= . 

With any Bɶ  basis of the null space of TB , i.e. Bɶ  is an 

orthogonal complement of B . Consider the following linear 
matrix inequalities (LMIs): 

( ), .0 0T TX B AX XA B> + <ɶ ɶ  (10) 

The linear sliding surface σ  is given by the following explicit 
formula: 

1 0T
state stateSs B X sσ −= = =  (11) 

 Now, let the control law be given as follows: 

( ) 1 1
2 3( )

2
k

u SB k x k h σ
σ ε

−
− + +=

+
 (12) 

where ε  is any positive scalar and 

1 2 3,  ,  0 SA SDk k k >> >  

Theorem 1. Suppose that the LMIs (10) has a solution X  
and the linear sliding surface is given by Equation (11). And 
consider the system (9) with control (12). Then, the 
reduced-order system dynamics restricted to the switching 
surface 0σ =  is asymptotically stable. And every solution 
trajectory is directed towards the linear switching surface 
and remains on the surface for all subsequent time. 

Proof. Define a transformation matrix and the associated 
vector v  as follows: 
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where 2x1
1v R∈ , 6x1

2v R∈  and 2v σ= . We can see that 

( ) ( )
1 11 TM XB B XB B SB

− −−  =   
ɶ ɶ ɶ . By the transformation 

on can obtain 

ˆ ˆv Av Bu= +ɺ  (13) 

where 
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 
. The system (13) in the sliding mode 

0σ σ= =ɺ  is governed by the following system dynamics: 

( ) 1

1 1
T Tv B AXB B XB v

−
= ɶ ɶ ɶ ɶɺ  (14) 

The following Lemma will be used 

Lemma 1 [9]. Consider the following uncertain system 

( ) ( )t tx Ax=ɺ  (15) 

The system (15) is said to be quadratically stable if there 
exists a positive definite symmetric matrix P such that  

.0TAAP P+ <  (16) 

By Lemma 1, one can see that the reduced-order equivalent 
system (14) is quadratically stable if there exists a 
positive-definite matrix P  such that 

( ) ( )1 1
0T T T T TB AXB B XB P P B XB B XA B

− −
+ <ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (17) 

Choosing TP B XB= ɶ ɶ  and substituting it into the above 
inequality yield 

( ) 0T TB AX XA B+ <ɶ ɶ  (18) 

Obviously, the inequality (18) is equivalent to (10). Using the 
linear sliding surface, one can obtain 

stateSAs SBu SDfσ = + +ɺ . Let Lyapunov function  

TV σ σ=  (19) 

If we differentiate (19), with respect to time combined with 
(11), and (9) then we have:
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This completes the proof. 

B. Simulation 

In this section, dynamic behaviors of the system and 
control performance are discussed in simulation result by 
using Maple to solve the Equation (8).  

 

Fig. 3.2-1 Time respone of  the currents for each coil of 
PID control. 
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Fig. 3.2-2 Time respone of  the currents for each coil of 
SMC control. 
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Fig. 3.2-3 Time respone of the displacements for each coil 

of PID control. 
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Fig. 3.2-4 Time respone of  the displacements for each 

coil of SMC control 

From Fig. 3.2-1  to Fig. 3.2-4, it is easy to see that the 
proposed controller of SMC has a good performance, fast 
response than PID and is effective in dealing with the 
disturbance. 

IV.  CONCLUSION  

In this paper, the nonlinear system model, the so-called 
are active magnetic bearings for a two DOF, is introduced.  
The system a structure of an active magnetic bearing two DOF 
is obtained by Lagrange’s equation. In this model, the current 
in each coil is treated as a state variable and the control input 
is the voltage applied to each coil, this approach offers more 
advantages than current control input approach. It is more 
reality and also allows us to synthesize the controllers with the 
control input is voltage. Dynamic behavior of the two DOF in 
magnetic bearings and performance of the controller of the 
SMC approach are superior to PID. In addition, the sliding 
surface is designed in term of LMIs to guarantee the stability 
of system dynamics in sliding mode. SMC technique has 
shown that the controller can guarantee the rotor stay in the 
center even disturbance effect. 
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