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Peninsular Indian Catchments 
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Abstract: The strength and success of hydrological analysis 

depend upon the quantity and quality of observed data. In the 

recent past, the availability of advanced computing facilities and 

measurement techniques had a great impact on the field of 

hydrology, especially in hydrologic analysis and hydrologic 

modeling. In spite of such growth, the present hydrologic modeling 

has certain challenges: complexity (involving a large number of 

parameters), applicability to a specific region (difficult to 

generalize for other regions), and lack of understanding of the 

connection between model theories and the actual system. The 

general solution of simplifying the models in terms of developing 

a classification framework has been discussed and focused on in 

the present study. It will greatly help to overcome the hydrologic 

modeling challenges and provides a better understanding of the 

hydrologic process. In general, classification is a way of grouping 

entities which has similar characteristics. The importance of 

applying nonlinear dynamics and chaos methods for classification 

has been realized in the recent past; since such studies provide 

exclusive information on hidden characteristics such as 

complexity, nonlinearity, dimensionality, etc. Of hydrological 

processes. The hydrologic processes are complex. In this study, 

information regarding the complexity is extracted by statistical 

analysis and linear methods such as Autocorrelation Function, 

and Average Mutual Information. 367 gridded rainfall stations 

over Peninsular Indian basins are used to investigate the 

applicability of different methods used in the study. 

Keywords: Peninsular India, Hydrology, Rainfall, Nonlinear 

dynamics, Autocorrelation, Average Mutual Information. 

I. INTRODUCTION 

However, only a small fraction of water is freshwater 

and further a smaller fraction of it is accessible and usable for 

human survival and well-being. The availability of water 

significantly varies in space and time and, hence, water is 

unequally distributed over the globe. Due to this, and many 

other reasons such as the changes in the climate system 

especially the observed changes in the atmosphere, oceans, 

carbon and biogeochemical cycles, and temperature, the 

issues of water problem range in different dimensions such as 

flood, drought, contamination, etc., and the ability to 

withstand or safeguard humankind is a serious challenge. To 

meet the surging water demand as well as to reduce the 

impact of floods and droughts, comprehensive water resource 

planning and management is necessary.  
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The availability of data is a key requirement to justify the 

use of such models. A large quantity of hydrological data is 

made available as a result of applying advanced techniques 

and methodologies. However, such data which represents the 

dynamics of water availability over space and time needs to 

be analyzed and synthesized to generate meaningful 

information through statistical and hydrological models. 

II. HYDROLOGICAL MODELING 

Hydrologic models have essentially simplified 

representations of the highly complex hydrologic cycle and 

associated processes. Hydrologic models can be grouped 

under different categories, depending upon, for example, the 

basis, complexity, and methodology considered: physically 

based models, conceptual models, lumped models (if all 

parameters are spatially averaged over the catchment), 

distributed models, linear models, nonlinear models, and 

data-driven models. There is already an extensive amount of 

literature on these various types of models and their 

performance for various situations, including issues related to 

model complexity and data requirement (Beven, 1989[1]; 

Singh and Woolhiser, 2002 [29]; Singh and Frevert, 2006). 

Physically based models, such as the one proposed by Freeze 

and Harlan, describe distributed mechanics of hydrologic 

processes. Hydrologic modeling using a physically based 

model can be very complex and typically requires detailed 

knowledge of physical processes. Such models are 

appropriate for studying the effects of land use changes, soil 

erosion, and surface water groundwater interactions because 

their parameters are reflected in the field measurements. In 

practice, however, they do not represent all physical 

processes in their entirety as they are purported to, especially 

considering the reality of significant heterogeneity in the 

landscape and variability in climatic inputs and, hence, their 

influence on water flows in the field. Conceptual models, on 

the other hand, provide "simplified representations of key 

hydrologic processes using a perceived system". Such models 

are well-known for their moderate data requirement. Such 

models rely on machine-learning approaches that attempt to 

learn, represent, and predict the system using observed data, 

through a training mechanism relating inputs and outputs. 

Data-driven models are widely considered to bridge the gap 

between classical regression and physically based models. 

However, such 3 models generally have limited ability to 

understand the details of the underlying physical processes of 

the system. Regardless of the type of hydrologic model, 

advances in computational power and data measurement 

techniques have created a tendency to develop more and more 

complex models.  
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While such complex models are indeed useful to better 

represent hydrologic systems, they also possess important 

limitations when applied to real situations. A particular issue 

associated with complex models is parameter estimation and 

uncertainty since such models often contain a large number 

of parameters to be calibrated but corresponding data are 

generally not available. 

III. HYDROLOGIC CLASSIFICATION 

Looking back into the great 18th century, Carl Linnaeus, 

a Swedish botanist, physician, and zoologist, laid the 

foundations for the modern scheme of nomenclature. Another 

celebrated classification system is the periodic table of 

chemical elements which provided an extensively useful 

framework to classify, systematize and compare all the many 

different forms of chemical behavior. Soil classification is 

another area where classification has played a significant role. 

According to Rossiter, two types of soil classification are 

possible: natural soil classification; technical soil 

classification. While "diversity is nature's principal theme", 

human beings have been craving the least variability and 

order. There exists an order in a natural process or system, 

which needs to be discovered or unveiled. One approach to 

discerning order in a heterogeneous world is through the 

means of classification (Gould, 1989; Wagener et al. 2007 

[32][35][36][37]). Classification systems, such as taxonomy, 

nomenclature, categorization, and organization, all lead to 

naming and organizing entities or organisms into groups 

based on properties or relationships they have in common. 

Catchment classification has been traditionally carried out via 

Linnaeus-type analysis, mainly represented by hierarchical 

approaches. Classification is important to hydrologists to 

develop a meaningful hydrologic model for a region. 

Classification also provides the avenue through which 

research can be addressed in a rigorously systematic manner. 

4 Classification is viewed not simply as a way of creating a 

filing system, but rather as a rigorous scientific inquiry into 

the causes of similarities and relationships between 

catchments. 

A. Need for Hydrologic Classification 

A catchment can be defined as "all of the upstream area, 

which contributes to the open channel flow at a given point 

along a river". Catchments are open and complex 

environmental systems, which are characterized by enormous 

variability but exhibit some degree of organization. The 

catchment forms a landscape element that integrates all 

aspects of the hydrologic cycle within a defined area that can 

be studied, quantified, and acted upon. On the other hand, the 

catchment is a self-organizing system, whose form, drainage 

network, ground, and channel slopes, channel hydraulic 

geometries, soils, and vegetation, are all a result of adaptive 

ecological, geomorphic, and land-forming processes. The 

catchment forms a landscape element that integrates all 

aspects of the hydrologic cycle within a defined area that can 

be studied, quantified, and acted upon. Catchment 

classification helps to organize similar units that water is 

drained from, as well as discover orders from the extremely 

heterogeneous world of hydrology. Catchment classification 

would provide a first-order grouping of hydrologically 

similar catchments with implications for hydrological theory, 

observations, and modeling (Gupta et al. 2008 [9]; McMillan 

et al. 2011 [22]). The lack of a generally accepted catchment 

classification framework brought the question of what defines 

hydrologic similarity to the forefront of hydrologic science. 

Wagener et al. suggested that a classification framework, 

which is both descriptive and predictive, can be derived if it 

is based on the notion of catchment function and contains an 

explicit mapping between function, climate, and landscape 

characteristics. The main drawback of these classifications is, 

however, their focus on individual catchment characteristics 

(i.e. Climate, land use, catchment response, storage, etc.). To 

date, no universally accepted metric or combination of 

metrics has been identified to quantify catchment similarity 

from the triple point of view of forcing, form, and function; 

different arguments have been made for what might 

constitute a useful similarity framework. 

IV. STUDY AREA AND DATA 

Advanced technologies and measurement devices 

provided a novice way to observe and measure different 

hydrological processes on different scales. In addition to that, 

a fairly large amount of observed data in terms of topology 

and geographical data is now digitized and made used for 

scientific purposes. The spread of data communication 

networks allows hydrological data to be obtained, analyzed, 

and applied to real-time forecasting over large 

communication networks. Extrapolating from local 

measurements to get a regional picture is indispensable for 

the water resources research enterprise of a nation. Long-term 

monitoring of hydrologic systems – precipitation, 

streamflow, groundwater levels, water lost through 

evaporation, and so on – and archiving the data thus collected 

is essential for understanding system behavior, and biological 

and chemical processes. Without it, there is no basis for 

predictive modeling. 

The ultimate goal of data collection in hydrology, be it 

precipitation measurements, water-level recordings, 

discharge gauging, groundwater monitoring, and water 

quality sampling, is to provide a set of sufficiently good 

quality data that can be used in decision-making in all aspects 

of water resources management, in the wide range of 

operational applications as well as in research. Accurate 

assessment of water resource potential is of prime importance 

for developmental planning, flood protection and control, and 

efficient water management. Rainfall and streamflow are 

important processes in the hydrological cycle. Rainfall is the 

end product of different complex processes (Luk et al. 2001 

[21]) and plays a significant role in hydrologic modeling . The 

information on space-time variability in rainfall is important 

for decision-making in meteorology, hydrology, agriculture, 

telecommunications, and climate research. Studies on rainfall 

have been studied in different aspects: input parameter in 

forecasting and estimation of regional parameters 

(Drosdowsky, 1990 [6]; Joseph et al. 1991 [16]; Kiladis and 

Sinha., 1991), investigation of spatial variability (Murphy 

and Timbal., 2007 [23]; Ntegeka and Willems., 2008 [25]) 

and so on.  
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Similarly, streamflow is a fundamental and critical 

component of global and regional hydrological cycles 

(Makkeasorn et al. 2008 [24]). Several studies have discussed 

the streamflow reduction in basins (e.g., Giakoumakis and 

Baloutsos, 1997 [12]; Cigizoglu et al. 2005 [3]), Streamflow 

forecasting (e.g., Georgakakos et al. 2012 [11]; Wei and 

Watkins, 2011 [33]), activities that affect streamflow (e.g. 

Chelsea Nagy et al. 2012 [4]; Huang et al. 2012 [13]), and 

investigation of scaling properties in streamflow (Telesca et 

al. 2012 [31]). Studies in the past applied different 

methodologies to study different aspects of rainfall and 

streamflow. In recent times some attempts have been made to 

form a hydrologic/catchment classification which helps in 

modeling. For the present work, interpolated rainfall from 

367 grids in peninsular India. An outline of the study area and 

data used for the present study is presented in Table 1. 

Table 1. Details about the Data 

Data Type Region/Country No. of Stations Length of the Data Used 

Interpolated Rainfall Peninsular India (9 river basins) 367 1971–2005 (35 years) 

 

Figure. 1 Basins in Peninsular India for Analysis 

A. Peninsular Indian Data 

High-resolution gridded rainfall data are required to 

validate regional and mesoscale models and to study the intra-

seasonal fluctuations. In recent years, there has been 

considerable interest in developing high-resolution gridded 

data sets (e.g., New et al. 1999 [26]; Yatagai et al. 2005; 

Rajeevan et al. 2006 [28]; Xie et al. 2007 [34]). Rajeevan et 

al developed a high-resolution daily rainfall data set for the 

period 1951 to 2004, which has been used in many studies 

(e.g., Krishnamurthy and Shukla, 2008 [19]). However, there 

have been demands for much higher resolution for mesoscale 

rainfall analysis and mesoscale meteorological applications. 

For the present work, a very high-resolution monthly 

rainfall data set is used to find the patterns and the complexity 

level over the Peninsular Indian region. The high-resolution 

monthly gridded rainfall data set was developed using 

quality-controlled rainfall data from more than 6000 rain 

gauge stations over India. The analysis consists of daily 

rainfall data for all the seasons for the period 1971 to 2005. A 

well-tested interpolation method was used to interpolate the 

station data into regular grids of 0. 5 x 0. 5-degree Lat x Long. 

Recently, another high-resolution rainfall data set was 

developed at the Research 15 Institute for Humanity and 

Nature. The project is named Asian Precipitation-Highly 

Resolved Observational Data Integration Towards 

Evaluation of the Water Resources. Under this project, a 

high-resolution (0. 25 degrees x 0. 25 degrees and 0. 5 x 0.5 

degrees) daily rainfall data set was developed for the Asian 

region. The basic algorithm adopted by them is based on Xie 

et al. 

Some of the important characteristics of the peninsular 

Indian basin are represented in Table 4.4. In the present study, 

high-resolution gridded monthly rainfall data from nine major 

basins of South India have been selected, studied, and 

analyzed. The basins include Bhatsol, Cauvery, Godavari, 

Krishna, Pennar, Periyar, Tapi, Vaipar, and Vamsadhara. In 

total 367 grid stations in the selected areas have been 

analyzed. The data for a period of 35 yrs, starting from 

January 1971 to December 2005 has been used. The number 

of stations in each basin is detailed in Table 2. Rajeevan et 

al.have used the interpolation scheme proposed by Shepard 

for deriving the high-resolution gridded daily rainfall data. 

Table 2. Number of Basins and their Stations 

Basin Name No. of Stations 

Bhatsol 17 

Cauvery 27 

Godavari 110 

Krishna 92 

Pennar 49 

Periyar 20 

Tapi 21 

Vaipar 13 

Vamsadhara 19 
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V. METHODOLOGY 

Spatial phenomena in hydrology are mainly driven 

externally by spatial patterns in climate, soils, vegetation, 

topography, and geology. However, at very long timescales, 

a complex spatial organization develops which is created by 

the internal dynamics of the hydrological system. Today, the 

progress in hydrologic sciences is closely connected to 

modeling. Although experimental hydrology is extremely 

important, it is in combination with modeling that real new 

insight is achieved. Modeling is a framework for testing new 

theories and hypotheses to improve our understanding of 

hydrologic processes and how the different processes 

interact. One of the main tasks of time series analysis is to 

determine the basic properties of the underlying process, such 

as nonlinearity, complexity, chaos, etc. Some important 

analysis such as the Autocorrelation Function (ACF) and 

Average Mutual Information (AMI) method has been 

employed in this method including statistical analysis. 

Among the most widely used approaches is phase space 

reconstruction by time delay embedding (Packard et al. 1980 

[27]). Various techniques derived from the chaos theory have 

been applied, in the last years, in a lot of experimental fields 

from physics to engineering to medicine (meteorology, fluid 

dynamics, electroencephalography, electrocardiography, 

etc.) (Babloyantz and Destexhe 1986 [15], 1988 [5]; Kurths 

and Herzel, 1987 [17]; Lauterborn and Holzfuss, 1986 [20]; 

Lorenz, 1963; Hilborn, 2000; Galka, 2000 [10]; Soofi and 

Cao, 2002; Fan and Yao, 2003 [7]; Kyrtsou and Vorlow, 2005 

[18]). 

In the present study, the primary focus is on the 

application of the two methods mentioned already. To this 

end, the emphasis is on the investigation of the usefulness of 

the methods to the data (Peninsular Indian rainfall) Exclusive 

details about the data and study area can be found in the next 

chapter. The following parts will cover detailed information 

about the methods: Autocorrelation Function (ACF) and 

Average Mutual Information (AMI) in the results section in 

detail. 

VI. RESULT AND DISCUSSION 

Primarily basic statistical analysis is carried out for the 

Indian rainfall data. Some of the important details are as 

follows: 

A. Autocorrelation Function Method 

Autocorrelation, also known as serial correlation, is the 

cross-correlation of a signal with itself at different points in 

time. Informally, it is the similarity between observations as 

a function of the time lag between them. It is a mathematical 

tool for finding repeating patterns, such as the presence of a 

periodic signal obscured by noise, or identifying the missing 

fundamental frequency in a signal implied by its harmonic 

frequencies. It is often used in signal processing for analyzing 

functions or series of values, such as time domain signals. 

Autocorrelation refers to the correlation of a time series with 

its past and future values. Autocorrelation is also sometimes 

called "lagged correlation", which refers to the correlation 

between members of a series of numbers arranged in time. 

Positive autocorrelation might be considered a specific form 

of "persistence", a tendency for a system to remain in the 

same state from one observation to the next. 

Hydrological time series are frequently auto correlated 

because of inertia or carryover processes in the physical 

system. Autocorrelation can be exploited for predictions: an 

auto-correlated time series is predictable, probabilistically, 

because future values depend on current and past values. In 

the analysis of a time series for the identification of dynamic 

properties of the underlying system, it is customary to use 

ACF, at least as a preliminary investigative tool, among 

others. The ACF is a normalized measure of the linear 

correlation among successive values in the time series. values 

in the time series. For a discrete time, series Xi, where i = 1, 

2, ..., N, and for different values of lag time τ, the 

autocorrelation function ρ(τ) is determined according to:  

 

The use of ACF in characterizing the dynamic properties 

of a time series lies in its ability to determine the degree of 

dependence present in the values. For instance: (1) for a 

periodic process, the ACF is also periodic, indicating the 

strong relationship between values that repeat over and over 

again; (2) for a purely stochastic process, the ACF fluctuates 

randomly about zero, indicating that the process at any certain 

instance has no 'memory' of the past at all; and (3) for signals 

from a chaotic process, the ACF is expected to decay 

exponentially with increasing lag, because the states of a 

chaotic process are neither completely dependent nor 

completely independent of each other. Consequently, in the 

specific context of hydrologic process dynamics, the ACF 

provides some important information regarding seasonality, 

annual cycle, and persistence, among others. 

B. ACF Results for Peninsular Indian Rainfall 

The ACF method is applied to monthly rainfall data from 

each of the 367 gridded rainfall of peninsular India. Figure 

5.2 shows the monthly variations in rainfall for Station #1 and 

Station #2. Figure 5.3 shows the sample autocorrelation plots 

of the gridded Peninsular Indian data for Stations #1 and #2, 

respectively. The delay time values for these two stations are 

found to be 3. The delay time values from the ACF method 

for all 367 grids are carefully interpreted to classify the grids 

in terms of the entire region. Table 5.2 shows the classified 

stations of the gridded Indian rainfall data. 

Based on the delay time values obtained from the ACF 

method, the 367 stations are classified into three categories. 

Interestingly, only one station has an ACF value of 5, and all 

the remaining stations are having delay time values of either 

3 or 4. Figure 2. Shows classified Peninsular India based on 

the ACF values obtained. 
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Figure. 2 Sample ACF Plots for Peninsular Indian Rainfall Data: (a) Station #1 and (b) Station #2 

Table 3. Delay Time Values using ACF Method for Peninsular Indian Rainfall Data. 

ACF Value Stations No. of Stations 

3 1-3, 5, 7, 9, 10, 14, 15, 17, 18, 20, 21, 4, 25, 32-36, 39, 40, 45, 46, 49-51, 253 

 53, 55, 61, 65-68, 70-73, 82-85, 93-96, 104-108, 117-119, 128-148, 150,  

 152, 155-162, 166-175, 181-184, 188, 189, 191-199, 202, 206-219, 221,  

 223-225, 230-243, 245, 247-265, 269-271, 275-318, 320-367.  

4 4, 6, 8, 11-13, 16, 19, 22, 23, 26-31, 37, 38, 41-44, 47, 48, 52, 54, 56-60, 113 

 62-64, 69, 74-81, 86-92, 97-103, 109-116, 120-127, 141-143, 149, 151,  

 153, 154, 163-165, 176-180, 185-187, 190, 200, 201, 203-205, 220, 222,  

 226-229, 244, 246, 266-268, 272, 273, 312, 313, 319.  

5 274 1 

From Table 3, it is found that the time delay values for peninsular Indian rainfall data vary from 3 to 5. As it is clear that 

almost all the stations have the ACF value of 3 and 4 which describes the extreme variability in rainfall. The northern part of 

peninsular India, especially Tapi, Godavari, and some stations in Vamsadhara shows clear signs of ACF values having 3. 

Similarly, many stations in Bhatsol and Periyar basins also have low ACF values among the stations. The central stations of 

Krishna, Pennar, and Cauvery basins possess slightly higher ACF values (low variability) among the stations. At the same 

time stations in Cauvery, Vaipar, Pennar, and Vamsadhara basins show variations in ACF values among the stations in the 

same basin. Significantly, only one station (Station #274) shows a high value of ACF in the Godavari basin where almost all 

the stations have low variability. 

C. Average Mutual Information 

The mutual information method is one of the important methods for determining the lag (τ) that affects the dependence of 

one data over another (Cover and Thomas 1991). Average mutual information, which is similar to the autocorrelation function, 

tries to measure the extent to which values of xi+τ are related to the values of xi, at a given lag. It has the advantage of using 

probabilities, rather than a linear basis (as is done in the ACF method) to assess the correlation. If values of xi+τ are strongly 

related to values of xi for a given lag, mutual information is relatively high. If instead, values of xi+τ are only weakly related 

to values of xi at a particular lag, then mutual information at that lag is relatively low. Mutual information quantifies the 

dependence between two random variables (X, Y) in terms of information communicated about the value of one variable given 

knowledge of the other. Average mutual information (AMI) measures the dependence between pairs of random 22 variables. 

It has been used in many applications including blind source separation, data mining, neural synchronicity assessment, and 

state space reconstruction in human movement studies (Bell and Sejnowski, 1995[2]; Ye, 2003; Pikovsky et al 2003). 

Presently, several algorithms and computational codes exist to estimate AMI. In the AMI method, τ is chosen to coincide with 

the first minimum of the mutual information (Fraser and Swinney, 1986). 

D. AMI Results for Peninsular Indian Rainfall 

The AMI analysis is carried out on rainfall series from each of the 367 grids in peninsular India,figure 3.Shows the AMI 

plots for the first two stations (Station #1 and Station #2). The lag which produces the first local minima of the mutual 

information can be the best choice for the time lag. The delay time values obtained range from 2 to 9. Table 4 shows the AMI 

values for all the stations. Figure 5.6 shows the sample peninsular Indian stations having AMI values from 2 to 9. 
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Figure.3 Sample AMI Plots Peninsular Indian Rainfall Data (a) Station #1 and (b) Station #2 

Table 4.  Delay Time Values using the AMI Method for Peninsular Indian Rainfall Data. 

AMI Value Stations No. of Stations 

2 266 1 

3 1, 9, 10, 20, 27, 30, 32, 46, 71, 95, 122, 176, 354. 13 

4 2, 7, 11, 13, 16-18, 24, 31, 34, 35, 39, 41, 49, 50, 52, 57, 59, 63, 69, 80, 

83, 84, 91, 92, 96, 103-105, 108, 109, 113, 125-129, 131-137, 139-141, 

146, 149, 150, 152, 154-175, 177, 180, 184, 188-218, 224, 225, 229- 
265, 269-271, 274-311, 313-353, 355-367. 

241 

5 3-5, 8, 19, 21, 22, 33, 38, 40, 42-44, 51, 53-55, 58, 60-62, 64-68, 70, 72- 

75, 77-79, 81, 82, 85-90, 93, 94, 97-102, 106, 107, 110-112, 114-120, 
123, 124, 130, 138, 142-145, 147, 148, 151, 153, 178, 179, 181-183, 

185-187, 219-223, 226, 228, 268, 272, 312. 

92 

6 23, 25, 26, 29, 37, 45, 48, 56, 76, 121, 273. 11 

7 12, 14, 15, 28, 36, 47 6 

9 6, 227, 267 3 

 

 

Figure.4 Sample AMI Plots for Peninsular Indian Rainfall Data Showing Each of the Time Delays. 

It is very clear from the number of stations in both low 

and high delay time values is less compared to the medium 

time delay values (in this case, the low and high delay time 

values are considered as 2 and 9 respectively). 90% of the 

stations have moderate variability as their delay time values 

are found to be 4 and 5. This is very significant when these 

results are compared with the ACF results of peninsular 

Indian rainfall data. 

Figure 4 describes the clear indication of the separation of 

delay time values (i.e. region specific or basin-specific). For 

instance, almost all the stations of Tapi, Godavari, and 

Vamsadhara have a delay time value of 4 and many stations 

in Bhatsol and Pennar basins have a delay time value of 5. 

The stations of the Krishna basin are found to have different 

delay time values. Similarly, the results of Cauvery, Vaipar, 

and Pennar also possess significant differences in the delay 

time values.  

E. Summary 

The requirement for effective hydrologic modeling is an 

accurate understanding and acquiring information on the 

streamflow as well as rainfall dynamics. There are a large 

number of models which were developed in the past which 

certainly provided a better understanding of hydrological 

processes or catchments. The developed models also had a 

relative amount of complexity in them requiring a greater 

number of data, involving a large number of parameters, and 

so on. 
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 In addition to that, the models are subject to catchment-

specific, region-specific, and process-specific. It is very much 

essential for a wide range of purposes such as the 

identification of the appropriate complexity of the model and 

interpolation/extrapolation of the data. Several approaches 

have been proposed and applied to study the variability of 

streamflow and rainfall, including catchment classification. 

Recently the specific task of developing a catchment 

classification framework based on dynamics which helps in 

effective and efficient modeling practice has gained great 

interest (Hrachowitz et al 2009 [14], Sivakumar et al 2015 

[30]). The present study is focused on the application of two 

different methods: Autocorrelation Function and Average 

mutual Information to study rainfall variability. It is aimed to 

analyze the dataset: Interpolated rainfall Peninsular Indian 

gridded rainfall 367 stations. 

VII. CONCLUSION 

Primarily ACF method was used to find the time delay (τ) 

which is further used as a metric in classifying the stations. 

The delay time (τ) is chosen based on the lag time where ACF 

first crosses zero (Holzfuss and Mayer-Kress, 1986). For 

peninsular Indian rainfall, the range is still lower and the ACF 

value ranges from 3 to 5 which shows high variability in 

gridded rainfall data also. A nonlinear method, AMI is 

applied to find the delay time (τ), and based on the AMI 

value, the stations are classified. Delay time (τ) is chosen to 

coincide with the first minimum of the mutual information 

(Fraser and Swinney, 1986 [8]). The AMI values for 

peninsular Indian rainfall AMI range from 2 to 9 in which the 

separations of delay time values are region-specific. For 

instance, the number of stations in basins such as Tapi, 

Godavari, and Vamsadhara almost has the same delay time. 
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