
International Journal of Advanced Engineering and Nano Technology (IJAENT)

ISSN: 2347-6389, Volume-1, Issue-3, February 2014

1 Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.

Hardware Implementation of 64 Bit Floating Point

Arithmetic Using VHDL

Vibha Mishra, Vinod Kapse

Abstract— Many of the scientific applications rely on floating

point (FP) computation, often requiring the use of the 64 bit

Floating Point format specified by the IEEE standard 754. The

use of double precision (D.P.) data type improves the accuracy

and dynamic range of the computation, but simultaneously it

increases the complexity and performance of the arithmetical

computation of the module. The design of high performance 64-

Bit floating point units (FPUs) is thus of interest in this

Document.

Keywords- IEEE, (D.P.) (FP).

I. INTRODUCTION

Floating Point Arithmetic are widely used in large set of

scientific and signal processing computation. Hardware

implementation of floating point arithmetic is more

complex than for fixed point numbers, and this puts a

performance limit on several of these applications. Several

works also focused on their implementation on FPGA

platforms.

Floating point arithmetic implementations involve

processing separately the sign, exponent and mantissa parts,

and then combining them after rounding and normalization.

IEEE standard for floating point (IEEE-754) specifies how

single precision (32 bit) and double precision (64 bit)
floating point numbers are to be represented.

Many of the scientific applications described above rely on

floating point (FP) computation, often requiring the use of

the double precision (D.P.) format specified by the IEEE

standard 754. The use of D.P. data type improves the

accuracy and dynamic range of the computation, but

simultaneously it increases the complexity and performance

of the arithmetical computation of the module. The design

of high performance floating point units (FPUs) is thus of

interest in this domain.

Hierarchy for the proposed Design of 64 bit Floating point

arithmetic.

Manuscript received February, 2014.

Vibha Mishra, M Tech (Embedded System & VLSI Design) GGITS,

Jabalpur, India.

Vinod Kapse, Head (E &Communications) GGITS, Jabalpur, India.

Combinations of Expected Inputs and Outputs for 64 bit

Floating point arithmetic.

The input signals to the top level module are the following:

 The input signals to the top level module are the

following:

 clk (global)

 rst (global)
 enable (set high to start operation)

 rmode (rounding mode, 2 bits, 00 = nearest, 01 =

zero,10 = pos inf, 11 = neg inf)

 fpu_op (operation code, 3 bits, 000 = add, 001 =

subtract,010 = multiply, 011 = divide, others are not

used)

 opa, opb (input operands, 64 bits) The output

signals from the module are the following:

 out_fp (output from operation, 64 bits)

 ready (goes high when output is available)

 underflow
 overflow

 Inexact

 Exception

 Invalid

Floating Point Addition/subtraction Module

Floating Point Addition is one of the complex unit in the

floating point arithmetic operations. Addition / subtraction

is the most basic arithmetic operation. The hardware

implementation of this arithmetic for floating point numbers

is a complicated operation due to the requirement of

normalization. A proposed implementation method of 64-

bit floating point adder/subtractor has been shown here.
The flowchart for Floating Point adder/subtractor is shown

in Fig.
1. Here the term addition is used to refer to both addition
and subtraction as the same hardware is used in both cases.
The steps for computing addition of two floating point
numbers proceeds as follows,

1. Compare exponents and mantissa of both numbers.

 Decide large exponent & mantissa and small exponent &

 mantissa.
2. Right shift the mantissa associated with the smaller

 exponent, by the difference of exponents.

3. Add both mantissa if signs are same else subtract smaller

 mantissa from large one.

4. Do the rounding of the result after mantissa addition.

Hardware Implementation of 64 Bit Floating Point Arithmetic Using VHDL

2
Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.

5. If the subtraction results in loss of most significant bit

 (MSB), then the result must be normalized.

6. Do normalization and adjust large exponent accordingly.

7. Final result includes sign of larger number, normalized

 exponent and mantissa.

Implementation of Floating Point Multiplier
Floating Point Multiplication Algorithm

Multiplying two numbers in floating point format is done as

follows.

Flow Chart Of Proposed ADDER/SUBTRACTOR Design

Multiplier structure with rounding and exceptions

Black box view of 64 bit Floating point Multiplier with

rounding and exceptions

Multiplier Operation
The multiplication operation is performed in the module

(V_Fpu_Mul).

1. The mantissa of operand A and the leading ‗1‘ (for

normalized numbers) are stored in the 53-bit register

(mul_a).

2. The mantissa of operand B and the leading ‗1‘ (for

normalized numbers) are stored in the 53-bit register

(mul_b).

3. Multiplying all 53 bits of mul_a by 53 bits of mul_b
would result in a 106-bit product.

4. 53 bit by 53 bit multipliers are not available in the
most popular Altera FPGAs,so the multiply would be
broken down into smaller multiplies and the results
would be added together to give the final 106-bit
product.

Multiply is broken up as follows:
product_a = mul_a[23:0] * mul_b[16:0] product_b =

mul_a[23:0] * mul_b[33:17] product_c = mul_a[23:0] *

mul_b[50:34] product_d = mul_a[23:0] * mul_b[52:51]

product_e = mul_a[40:24] * mul_b[16:0] product_f =

mul_a[40:24] * mul_b[33:17] product_g = mul_a[40:24] *

mul_b[52:34] product_h = mul_a[52:41] * mul_b[16:0]

product_i = mul_a[52:41] * mul_b[33:17] product_j =
mul_a[52:41] * mul_b[52:34]

7. The products (a-j) are added together, with the
appropriate offsets based on which part of the mul_a

and mul_b arrays they are multiplying. Similar

offsets are used for each product (c-j) when adding

them together.

8. The summation of the products is accomplished by

adding one product result to the previous product

result instead of adding all 10 products (a-j) together in

one summation.
9. The final 106-bit product is stored in register

(product).
10. The output will be left-shifted if there is not a ‗1‘in

the MSB of product. The number of leading zeros in

register (product) is counted by signal

(product_shift). The output exponent will also be

reduced by (product_shift).

11. The exponent fields of operands A and B are added

together and then the value (1022) is subtracted from

the sum of A and B.

12. If the resultant exponent is less than 0, than the

(product) register needs to be right shifted by the

amount. This value is stored in register
(exponent_under). The final exponent of the output

operand will be 0 in this case, and the result will be a

denormalized number.

13. If exponent_under is greater than 52, than the

mantissa will be shifted out of the product register, and

the output will be 0, and the ―underflow‖ signal will

be asserted.

14. The mantissa output from the (fpu_mul) module is in
56-bit register (product_7). The MSB is a leading ‗0‘ to

allow for a potential overflow in the rounding

module. The first bit 0‘ is followed by the leading‗1‘ for

normalized numbers, or ‗0‘ for denormalized numbers.

15. Then the 52 bits of the mantissa follow.Two extra

bits follow the mantissa, and are used for rounding
purposes. The first extra bit is taken fromthe next bit

after the mantissa in the 106-bit product result of the

multiply. The second extra bit is an OR of the 52

LSB‘s of the 106-bit product.

International Journal of Advanced Engineering and Nano Technology (IJAENT)

ISSN: 2347-6389, Volume-1, Issue-3, February 2014

3 Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.

1 The leading‗1‘ (if normalized) and mantissa of operand
A is the dividend, and the leading‗1‘ (if normalized)
and mantissa of operand B is the divisor.

2 The divide is executed long hand style, with one bit of
the quotient calculated each clock cycle based on a
comparison between the dividend register
(dividend_reg) and the divisor register (divisor_reg).

3 If the dividend is greater than the divisor, the quotient
bit is ‗1‘, and then the divisor is subtracted from the
dividend, this difference is shifted one bit to the left,
and it becomes the dividend for the next clock
cycle.

4 If the dividend is less than the divisor, the dividend is
shifted one bit to the left, and then this shifted value

becomes the dividend for the next clock cycle.

5 The exponent for the divide operation is calculated

from the exponent fields of operands A and B.

6 The exponent of operand A is added to 1023, and
then the exponent of operand B is subtracted from

this sum.
7 The result is the exponent value of the output of the

divide operation. If the result is less than 0, the quotient
will be right shifted by the amount.

8 The divide operation takes 54 clock cycles to complete,
as it takes 1 clock cycle to calculate each of the 54
bits of the quotient.

9 The register (count_out) counts down from 53 to 0,
and when it reaches 0, the 54-bit quotient register has its
final value. The value that is passed on to the rounding
module is stored in the 56-bit register (mantissa_7).

10 The first most significant bit is a ‗0‘ to hold a value in
case of overflow in the rounding stage, the next bit is
the leading ‗1‘ for normalized numbers, and the next
52 bits are the mantissa bits. The remaining 2 bits are
extra bits for rounding purposes.

11 The first extra bit is the last bit that was calculated in
the quotient. The quotient has 54 bits, while the
mantissa and leading ‗1‘ are only 53 bits, so the extrabit
is saved and passed on to the rounding stage.

12 The second extra bit is calculated by performing an

OR on all of the remainder bits that were leftover

after the last compare between the dividend and divisor
registers.

Rounding and Exceptions

The IEEE standard specifies four rounding modes

Round to nearest, Round to zero,

Round to positive infinity, and

Round to negative infinity.
The rounding operation is performed in the module
(fpu_round) in the source file, (fpu_round.vhd). The inputs
to the (fpu_round) module from the previous stage
(addition, subtraction, multiply, or divide) are sign (1
bit), mantissa_term (56 bits), and exponent_term (12 bits).
The mantissa_term includes an extra ‗0‘ bit as the MSB,
and two extra remainder bits as LSB‘s, and in the middle
are the leading ‗1‘ and 52 mantissa bits. The
exponent_term has an extra ‗0‘ bit as the MSB so that an
overflow from the highest exponent (2047) will be caught;
if there were only 11 bits in the register, a rollover would
result in a value of 0 in the exponent field, and the final
result of the fpu operation would be incorrect.
The below table shows the rounding modes selected for

various bit combinations of rmode.

S. No.

Bit

Rounding Mode

1 00 round_nearest_even

2 01 round_to_zero

3 10 round_up

4 11 round_down

Rounding modes for various bit combinations of rmode

1. For round to nearest mode, if the first extra

remainder bit is a ‗1‘, and the LSB of the mantissa is a

‗1‘, then this will trigger rounding. To perform

rounding, the mantissa_term is added to the signal

(rounding_amount). The signal rounding_amount has a

‗1‘ in the bit space that lines up with the LSB of the 52-

bit mantissa field. This ‗1‘ in rounding_amount lines

up with the 2 bit of the register (mantissa_term);

mantissa_term has bits numbered 55 to 0. Bits 1 and 0

of the register (mantissa_term) are the extra remainder
bits, and these don‘t appear in the final mantissa that is

output from the top levelmodule, fpu_double.

2. For round to zero mode, no rounding is performed,

unless the output is positive or negative infinity. This is

due to how each operation is performed. For multiply

and divide, the remainder is left off of the mantissa,

and so in essence, the operation is already rounding to

zero even before the result of the operation is passed to

the rounding module. The same occurs with add and

subtract, in that any leftover bits that form the

remainder are left out of the mantissa.
3. For round to positive infinity mode, the two extra

remainder bits are checked, and if there is a ‗1‘ in either

bit, and the sign bit is ‗0‘, then the rounding amount

will be added to the mantissa_term, and this new

amount will be the final mantissa.

4. Likewise, for round to negative infinity mode, the two

extra remainder bits are checked, and if there is a1‘ in

either bit, and the sign bit is ‗1‘, then the rounding

amount will be added to the mantissa_term, and this

new amount will be the final mantissa.

In the exceptions module, all of the special cases are

checked for, and if they are found, the appropriate output
is created, and the individual output signals of underflow,

overflow, inexact, exception, and invalid will be asserted

if the conditions for each case exist.

Exceptions

In the exceptions module, all of the special cases are
checked for, and if they are found, the appropriate output

is created, and the individual output signals of underflow,

overflow, inexact, exception, and invalid will be asserted

if the conditions for each case exist. The special cases are:
1. divide by 0 – result is infinity, positive or negative,

depending on the sign of operand A
2. divide 0 by 0 – result is SNaN, and the invalid signal

will be asserted
3. divide infinity by infinity - result is SNaN, and the

invalid signal will be asserted
4. multiply 0 by infinity - result is SNaN, and the invalid

signal will be asserted
5. add, subtract, multiply, or divide overflow – result is

infinity, and the overflow signal will be asserted
6. add, subtract, multiply, or divide underflow – result is

0, and the underflow signal will be asserted
7. add positive infinity with negative infinity - result is

SNaN, and the invalid signal will be asserted

Hardware Implementation of 64 Bit Floating Point Arithmetic Using VHDL

4
Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.

S.No.

Slice Logic

Utilization

Adder

Subtractor

Multiplier

Divisor

1

Minimum

Period (ns)

2.749

2.64

2.411

2.46

2

Maximum

Frequency

(MHz)

363.76

354.76

414.714

394.714

8. subtract positive infinity from positive infinity - result

is SNaN, and the invalid signal will be asserted

9. subtract negative infinity from negative infinity - result

is SNaN, and the invalid signal will be asserted
10. divide by infinity – result is 0, positive or negative,

depending on the sign of operand A the underflow
signal will be asserted

11. one or both inputs are QNaN – output is QNaN

12. one or both inputs are SNaN – output is QNaN, and the

invalid signal will be asserted
13. if either of the two remainder bits is ‗1‘ – inexact signal

is asserted If any of the above cases occurs, the
exception signal will be asserted.

If the output is negative infinity, and the rounding mode is
round to zero or round to positive infinity, then the output
will be rounded down to the largest negative number.aN is
defined as Quiet Not a Number. SNaN is defined as
Signaling Not a Number. If either input is a SNaN, then the
operation is invalid. The output in that case will be a
QNaN. For all other invalid operations, the output will be a
SNaN. If either input is a QNaN, the operation will not be
performed, and the output will be a QNaN. The output in
that case will be the same QNaN as the input QNaN. If both
inputs are QNaNs, the output will be the QNaN in operand
A. The use of Not a Number is consistent with the IEEE 754
standard.

II. RESULTS

The 64 Bit floating point adder/subtractor, multiplier and
divisor designs were simulated and synthesized in Altera‘s

Quartus-II 11. which are mapped on to Cyclone IV

GX FPGA. The simulation results of 64-bit floating point

double precision adder /subtractor multiplier and divisor are

shown in Figure and respectively. The ‗opa‘ and ‗opb‘ are

the inputs and ‗out‘ is the output. Table 1 gives the device

utilization for implementing the circuits on Cyclone IV GX

FPGA. Table 2 shows the timing summary of 64 Bit

floating point adder/subtractor multiplier and divisor.

In case of Xilinx core, it occupies an area of 1266 slices

and its operating frequency 284 MHz respectively. Hence
the present design provides high operating frequency.

Table 1. Device utilization summary of 64 Bit floating

point adder/subtractor, multiplier and divisor.

CONCLUSION

The double precision floating point adder/subtractor,

multiplier and divisor supports the IEEE-754 binary

interchange format, targeted on a Altera‘s Cyclone IV GX

EP4CGX30CF23C6 FPGA. The designs achieved the

operating frequencies of 363.76 MHz and 414.714 MHz.

FLOPs with an area of 660 and 648 slices respectively. The

adder/subtractor design operates at a frequency which is

3% and 28% more compared to [6] and Xilinx core

respectively. As compared to the single precision floating
point multiplier [12] and Xilinx core, the multiplier design

supports double precision, provides high speed and gives

more accuracy. These designs handles the overflow,

underflow, rounding mode and various exception conditions.

REFERENCES

[1] P. Belanovic and M. Leeser, ―A Library of Parameterized Floating-

Point Modules and Their Use‖ , in 12th International Conference on

Field-Programmable Logic and Applications (FPL- 02). London, UK:

Springer-Verlag, (2002) September, pp. 657–666.

[2] K. Hemmert and K. Underwood, ―Open Source High

Performance Floating-Point Modules‖ , in 14th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines

(FCCM-06), (2006) April, pp. 349–350.

[3] A. Malik and S. -B. Ko, ―A Study on the Floating-Point Adder in

FPGAs‖ , in Canadian Conference on Electrical and Computer

Engineering (CCECE-06), (2006) May, pp. 86–89.

[4] D. Sangwan and M. K. Yadav, ―Design and Implementation of

Adder/Subtractor and Multiplication Units for Floating-Point

Arithmetic‖ , in International Journal of Electronics Engineering,

(2010), pp. 197-203.

[5] M. K. Jaiswal and R. C. C. Cheung, ―High Performance FPGA

Implementation of Double Precision Floating Point

Adder/Subtractor‖ , in International Journal of Hybrid Information

Technology, vol. 4, no. 4, (2011) October.

[6] B. Lee and N. Burgess, ―Parameterisable Floating-point Operations

on FPGA‖ , Conference Record of the Thirty-Sixth Asilomar

Conference on Signals, Systems, and Computers, (2002).

[7] M. Al-Ashrafy, A. Salem, W. Anis, ―An Efficient

Implementation of Floating Point Multiplier‖ , Saudi International

Electronics, Communications and Photonics Conference (SIECPC),

(2011) April 24-26, pp. 1-5.

Table2 Timing summary of 64 Bit floating point adder/
subtractor ,multiplier and divisor.

S.No.
Slice Logic

Utilization

Adder

Subtractor

Multiplier

Divisor

1

Number of logic

Registers

672

689

1741

994

2

Number of

Combinational

logics

965

888

6,860

1,633

