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Abstract— Many of the scientific applications rely on floating 

point (FP) computation, often requiring the use of the 64 bit 

Floating Point format specified by the IEEE standard 754. The 

use of double precision (D.P.) data type improves the accuracy 

and dynamic range of the computation,  but  simultaneously  it  

increases  the complexity and performance of the arithmetical 

computation of the module. The design of high performance 64-

Bit floating point units (FPUs) is thus of interest in this 

Document. 
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I.   INTRODUCTION 

Floating Point Arithmetic are widely used in large set of 

scientific and signal processing computation.   Hardware 

implementation of floating point arithmetic is more 

complex than for fixed point numbers, and this puts a 

performance limit on several of these applications. Several 

works also focused on their implementation on FPGA 

platforms. 

Floating point arithmetic implementations involve 

processing separately the sign, exponent and mantissa parts, 

and then combining them after rounding and normalization. 

IEEE standard for floating point (IEEE-754) specifies how 

single precision (32 bit) and double precision (64 bit) 
floating point numbers are to be represented. 

Many of the scientific applications described above rely on 

floating point (FP) computation, often requiring the use of 

the double precision (D.P.) format specified by the IEEE 

standard 754. The use of D.P. data type improves the 

accuracy and dynamic range of the computation, but 

simultaneously it increases the complexity and performance 

of the arithmetical computation of the module. The design 

of high performance floating point units (FPUs) is thus of 

interest in this domain. 

 
Hierarchy for the proposed Design of 64 bit Floating point 

arithmetic.  

 

 

 
 
Manuscript received February, 2014.   

Vibha Mishra, M Tech (Embedded System & VLSI Design) GGITS, 

Jabalpur, India. 

Vinod Kapse, Head (E &Communications) GGITS, Jabalpur, India. 

 
Combinations of Expected Inputs and Outputs for 64 bit 

Floating point arithmetic. 

The input signals to the top level module are the following: 

 The input signals to the top level module are the 

following: 

 clk (global) 

 rst (global) 
 enable (set high to start operation) 

 rmode (rounding mode, 2 bits, 00 = nearest, 01 = 

zero,10 = pos inf, 11 = neg inf) 

 fpu_op (operation code, 3 bits, 000 = add, 001 = 

subtract,010 = multiply, 011 = divide, others are not 

used) 

 opa, opb (input operands, 64 bits) The output 

signals from the module are the following: 

 out_fp (output from operation, 64 bits) 

 ready (goes high when output is available) 

 underflow 
 overflow 

 Inexact 

 Exception 

 Invalid 

Floating Point Addition/subtraction Module 
 
Floating Point   Addition is one of the complex unit in the 

floating point arithmetic operations. Addition / subtraction 

is the most basic arithmetic operation. The hardware 

implementation of this arithmetic for floating point numbers 

is a complicated operation due to the requirement of 

normalization. A proposed implementation method of 64-

bit floating  point  adder/subtractor  has  been  shown  here.  
The flowchart for Floating Point adder/subtractor is shown 

in Fig. 
1. Here the term addition is used to refer to both addition 
and subtraction as the same hardware is used in both cases. 
The steps for computing addition of two floating point 
numbers proceeds as follows, 

1. Compare  exponents  and  mantissa  of  both  numbers. 

 Decide large exponent & mantissa and small exponent & 

 mantissa. 
2. Right  shift  the  mantissa  associated  with  the  smaller 

 exponent, by the difference of exponents. 

3. Add both mantissa if signs are same else subtract smaller 

 mantissa from large one. 

4. Do the rounding of the result after mantissa addition. 
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5. If the subtraction results in loss of most significant bit 

 (MSB), then the result must be normalized. 

6. Do normalization and adjust large exponent accordingly. 

7. Final result includes sign of larger number, normalized 

 exponent and mantissa. 

 

Implementation of Floating Point Multiplier 
Floating Point Multiplication Algorithm 

Multiplying two numbers in floating point format is done as 

follows. 

 
Flow Chart Of Proposed ADDER/SUBTRACTOR Design 
 

  
Multiplier structure with rounding and exceptions 

  
Black box view of 64 bit Floating point Multiplier with 

rounding and exceptions 

Multiplier Operation 
The multiplication operation is performed in the module 

(V_Fpu_Mul). 

1. The mantissa of operand A and the leading ‗1‘  (for 

normalized numbers) are stored in the 53-bit register 

(mul_a). 

2. The mantissa of operand B and the leading ‗1‘  (for 

normalized numbers) are stored in the 53-bit register 

(mul_b). 

3. Multiplying all 53 bits of mul_a by 53 bits of mul_b 
would result in a 106-bit product. 

4. 53 bit by 53 bit multipliers are not available in the 
most popular Altera FPGAs,so the multiply would be 
broken down into smaller multiplies and the results 
would be added together to give the final 106-bit 
product. 

Multiply is broken up as follows: 
product_a = mul_a[23:0] * mul_b[16:0] product_b = 

mul_a[23:0] * mul_b[33:17] product_c = mul_a[23:0] * 

mul_b[50:34] product_d = mul_a[23:0] * mul_b[52:51] 

product_e = mul_a[40:24] * mul_b[16:0] product_f = 

mul_a[40:24] * mul_b[33:17] product_g = mul_a[40:24] * 

mul_b[52:34] product_h = mul_a[52:41] * mul_b[16:0] 

product_i = mul_a[52:41] * mul_b[33:17] product_j = 
mul_a[52:41] * mul_b[52:34] 

7. The  products  (a-j)  are  added  together,  with  the 
appropriate offsets based on which part of the mul_a 

and  mul_b  arrays  they  are  multiplying.  Similar 

offsets are used for each product (c-j) when adding 

them together. 

8. The summation of the products is accomplished by 

adding one product result to the previous product 

result instead of adding all 10 products (a-j) together in 

one summation. 
9.  The final 106-bit product is stored in register 

(product). 
10. The output will be left-shifted if there is not a ‗1‘in 

the MSB of product. The number of leading zeros in 

register (product) is counted by signal 

(product_shift). The output exponent will also be 

reduced by (product_shift). 

11.  The exponent fields of operands A and B are added 

together and then the value (1022) is subtracted from 

the sum of A and B. 

12. If the resultant exponent is less than 0, than the 

(product) register needs to be right shifted by the 

amount. This value is stored in register 
(exponent_under). The final exponent of the output 

operand will be 0 in this case, and the result will be a 

denormalized number. 

13.  If exponent_under  is  greater  than  52,  than  the 

mantissa will be shifted out of the product register, and 

the output will be 0, and the ―underflow‖  signal will 

be asserted. 

14.  The mantissa output from the (fpu_mul) module is in 
56-bit register (product_7). The MSB is a leading ‗0‘ to  

allow for  a  potential overflow in  the rounding 

module. The first bit 0‘ is followed by the leading‗1‘ for 

normalized numbers, or ‗0‘ for denormalized numbers. 

15. Then the 52 bits of the mantissa follow.Two extra 

bits follow the mantissa, and are used for rounding 
purposes. The first extra bit is taken fromthe next bit 

after the mantissa in the 106-bit product result of the 

multiply. The second extra bit is an OR of the 52 

LSB‘s of the 106-bit product. 
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1     The leading‗1‘ (if normalized) and mantissa of operand 
A is the dividend, and the leading‗1‘ (if normalized) 
and mantissa of operand B is the divisor. 

2 The divide is executed long hand style, with one bit of 
the quotient calculated each clock cycle based on a 
comparison between the dividend register 
(dividend_reg) and the divisor register (divisor_reg). 

3     If the dividend is greater than the divisor,  the quotient 
bit is ‗1‘, and then the divisor is subtracted from the 
dividend, this difference is shifted one bit to the left, 
and it becomes the dividend for the next clock 
cycle. 

4 If the dividend is less than the divisor, the dividend is 
shifted one bit to the left, and then this shifted value 

becomes the dividend for the next clock cycle. 

5 The exponent for the divide operation is calculated 

from the exponent fields of operands A and B. 

6 The exponent of operand A is added to 1023, and 
then the exponent of operand B is subtracted from 

this sum. 
7 The result is the exponent value of the output of the 

divide operation. If the result is less than 0, the quotient 
will be right shifted by the amount. 

8 The divide operation takes 54 clock cycles to complete, 
as it takes 1 clock cycle to calculate each of the 54 
bits of the quotient. 

9    The register (count_out) counts down from 53 to 0, 
and when it reaches 0, the 54-bit quotient register has its 
final value. The value that is passed on to the rounding 
module is stored in the 56-bit register (mantissa_7). 

10   The first most significant bit is a ‗0‘ to hold a value in 
case of overflow in the rounding stage, the next bit is 
the leading ‗1‘  for normalized numbers, and the next 
52 bits are the mantissa bits. The remaining 2 bits are 
extra bits for rounding purposes. 

11   The first extra bit is the last bit that was calculated in 
the quotient. The quotient has 54 bits, while the 
mantissa and leading ‗1‘ are only 53 bits, so the extrabit 
is saved and passed on to the rounding stage. 

12    The second extra bit is calculated by performing an 

OR on all of the remainder bits that were leftover 

after the last compare between the dividend and divisor 
registers. 

Rounding and Exceptions 

The IEEE standard specifies four rounding modes 

Round to nearest, Round to zero, 

Round to positive infinity, and 

Round to negative infinity. 
The rounding operation is performed in the module 
(fpu_round) in the source file, (fpu_round.vhd). The inputs 
to the (fpu_round) module from the previous stage 
(addition, subtraction,  multiply,  or  divide)  are  sign  (1  
bit), mantissa_term (56 bits), and exponent_term (12 bits). 
The mantissa_term includes an extra ‗0‘ bit as the MSB, 
and two extra remainder bits as LSB‘s, and in the middle 
are the leading ‗1‘ and 52 mantissa bits. The 
exponent_term has an extra ‗0‘ bit as the MSB so that an 
overflow from the highest exponent (2047) will be caught; 
if there were only 11 bits in the register, a rollover would 
result in a value of 0 in the exponent field, and the final 
result of the fpu operation would be incorrect. 
The below  table  shows  the  rounding  modes  selected  for 

various bit combinations of rmode. 

 

 

 
S. No. 

 
Bit 

 
Rounding Mode 

1 00 round_nearest_even 

2 01 round_to_zero 

3 10 round_up 

4 11 round_down 
 
Rounding modes for various bit combinations of rmode 

1. For   round   to   nearest   mode,   if   the   first   extra 

remainder bit is a ‗1‘, and the LSB of the mantissa is a  

‗1‘,  then this  will trigger  rounding. To perform 

rounding, the mantissa_term is added to the signal 

(rounding_amount). The signal rounding_amount has a 

‗1‘ in the bit space that lines up with the LSB of the 52-

bit mantissa field. This ‗1‘ in rounding_amount lines  

up  with  the  2  bit  of  the  register (mantissa_term); 

mantissa_term has  bits  numbered 55 to 0. Bits 1 and 0 

of the register (mantissa_term) are the extra remainder 
bits, and these don‘t appear in the final mantissa that is 

output from the top levelmodule, fpu_double. 

2. For round to zero mode, no rounding is performed, 

unless the output is positive or negative infinity. This is 

due to how each operation is performed. For multiply 

and divide, the remainder is left off of the mantissa, 

and so in essence, the operation is already rounding to 

zero even before the result of the operation is passed to 

the rounding module. The same occurs with add and 

subtract, in that any leftover bits that form the 

remainder are left out of the mantissa. 
3. For round to positive infinity mode, the two extra 

remainder bits are checked, and if there is a ‗1‘ in either 

bit, and the sign bit is ‗0‘, then the rounding amount 

will be added to the mantissa_term, and this new 

amount will be the final mantissa. 

4. Likewise, for round to negative infinity mode, the two 

extra remainder bits are checked, and if there is a1‘  in 

either bit, and the  sign bit is  ‗1‘,  then the rounding 

amount will be added to the mantissa_term, and this 

new amount will be the final mantissa. 

In the exceptions module, all of the special cases are 

checked for, and if they are found, the appropriate output 
is created, and the individual output signals of underflow, 

overflow, inexact, exception, and  invalid  will  be  asserted  

if  the conditions for each case exist. 

Exceptions 

In the exceptions module, all of the special cases are 
checked for, and if they are found, the appropriate output 

is created, and the individual output signals of underflow, 

overflow, inexact, exception, and  invalid  will be   asserted  

if   the conditions for each case exist. The special cases are: 
1. divide by 0 – result is infinity, positive or negative, 

depending on the sign of operand A 
2. divide 0 by 0 – result is SNaN, and the invalid signal 

will be asserted 
3. divide infinity by infinity -  result is SNaN, and the 

invalid signal will be asserted 
4. multiply 0 by infinity - result is SNaN, and the invalid 

signal will be asserted 
5. add, subtract, multiply, or divide overflow – result is 

infinity, and the overflow signal will be asserted 
6.    add, subtract, multiply, or divide underflow – result is 

0, and the underflow signal will be asserted 
7.    add positive infinity with negative infinity - result is 

SNaN, and the invalid signal will be asserted 
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S.No. 

Slice Logic 
 

Utilization 

 
Adder 

 
Subtractor 

 
Multiplier 

 
Divisor 

 

1 

 

Minimum 
 

Period (ns) 

 

2.749 

 

2.64 

 

2.411 

 

2.46 

 
 

2 

Maximum 
 

Frequency 
 

(MHz) 

 

363.76 

 

354.76 

 

414.714 

 

394.714 

 

8. subtract positive infinity from positive infinity - result 

is SNaN, and the invalid signal will be asserted 

9. subtract negative infinity from negative infinity - result 

is SNaN, and the invalid signal will be asserted 
10.  divide by infinity – result is 0, positive or negative, 

depending on  the  sign  of  operand  A  the  underflow 
signal will be asserted 

11. one or both inputs are QNaN – output is QNaN 

12. one or both inputs are SNaN – output is QNaN, and the 

invalid signal will be asserted 
13.  if either of the two remainder bits is ‗1‘ – inexact signal 

is asserted If any of the above cases occurs, the 
exception signal will be asserted. 

If the output is negative infinity, and the rounding mode is 
round to zero or round to positive infinity, then the output 
will be rounded down to the largest negative number.aN is 
defined as Quiet Not a Number. SNaN is defined as 
Signaling Not a Number. If either input is a SNaN, then the 
operation is invalid. The output in that case will be a 
QNaN. For all other invalid operations, the output will be a 
SNaN. If either input is a QNaN, the operation will not be 
performed, and the output will be a QNaN. The output in 
that case will be the same QNaN as the input QNaN. If both 
inputs are QNaNs, the output will be the QNaN in operand 
A. The use of Not a Number is consistent with the IEEE 754 
standard. 

II. RESULTS 

The 64 Bit floating point adder/subtractor, multiplier and 
divisor designs were simulated and synthesized in Altera‘s 

Quartus-II  11.  which  are  mapped  on  to  Cyclone  IV  

GX FPGA. The simulation results of 64-bit floating point 

double precision adder /subtractor multiplier and divisor are 

shown in Figure  and  respectively. The ‗opa‘ and ‗opb‘ are 

the inputs and ‗out‘ is the output. Table 1 gives the device 

utilization for implementing the circuits on Cyclone IV GX 

FPGA. Table 2 shows the timing summary of 64 Bit 

floating point adder/subtractor multiplier and divisor. 

In case of Xilinx core, it occupies an area of 1266 slices 

and its operating frequency 284 MHz respectively. Hence 
the present design provides high operating frequency. 

Table 1. Device utilization summary of 64 Bit floating 

point adder/subtractor, multiplier and divisor. 

 

 

 

 

CONCLUSION 

The double precision floating point adder/subtractor, 

multiplier and divisor supports the IEEE-754 binary 

interchange format, targeted on a Altera‘s Cyclone IV GX 

EP4CGX30CF23C6 FPGA. The designs achieved the 

operating frequencies of 363.76 MHz and 414.714 MHz. 

FLOPs with an area of 660 and 648 slices respectively. The 

adder/subtractor design operates at a frequency which is 

3% and 28% more compared to [6] and Xilinx core 

respectively. As compared to the single precision floating 
point multiplier [12] and Xilinx core, the multiplier design 

supports double precision,  provides  high  speed  and  gives  

more accuracy. These designs handles the overflow,  

underflow, rounding mode and various exception conditions. 
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Table2  Timing  summary  of  64  Bit  floating  point  adder/ 
subtractor ,multiplier and divisor. 

 

S.No. 
Slice Logic 

 

Utilization 

 

Adder 
 

Subtractor 
 

Multiplier 
 

Divisor 

 
1 

 
Number of logic 

Registers 

 
672 

 
689 

 
1741 

 
994 

 
2 

Number of 

Combinational 

logics 

 
965 

 
888 

 
6,860 

 
1,633 


