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Abstract- In this paper analytical modeling for the electrical 
characteristics of low bandgap graphene nanoribbon field effect 
transistor (GNR-FET) has been presented. This analytical 
modeling is based on the two-dimensional Poisson’s equation in 
the weak nonlocality approximation. At first, analytical formula 
for spatial distribution of electric potential along the channel of 
low bandgap GNR-FET has been derived. Then using the channel 
potential, an expression of drain current of low bandgap 
GNR-FET is developed. The potential distribution and current are 
expressed in terms of device parameters and applied voltages. 
Spatial potential has been investigated with different levels of gate 
voltage, gate length and drain voltage. Similarly, the current has 
been investigated with different applied voltages. It shows that 
drain current is controlled by applied voltages hence the device 
might be applicable in digital and analog circuits. This work of 
analytical modeling would be helpful for analyzing the device and 
optimizing the parameters to improve its performance.  

 Index Terms— analytical modeling, graphene nanoribbon, 
GNR-FET, spatial potential, low bandgap.  

I. INTRODUCTION 

    Silicon has been unparallel candidate in semiconductor 
industry since long years. However, silicon based technology 
has reached to its upper physical limits of design complexity, 
processing power, energy consumption, density and heat 
dissipation [1]. While Si-based technology is approaching its 
fundamental limits, the researchers are working to find out 
new candidate material to replace Si to overcome the 
limitations [2]. Recently, grapheme is attracting the attention 
of the researchers because of high mobility for ballistic 
transport, high carrier velocity for fast switching, monolayer 
thin body for optimum electrostatic scaling, excellent thermal 
conductivity [3]. Therefore, graphene might be an alternate 
choice instead of Si. Graphene is one atom thick planer sheets 
of sp2 bonded carbon atoms, which are densely packed in a 
honeycomb crystal lattice [2]. Graphene sheet has zero 
bandgap but if graphene is fabricated as an array of strips, 
then it provides sufficient band gap for switching [3]; these 
strips are called graphene nanoribbons (GNR). Patterned 
graphene, that consists of an array of graphene strips, provides 
an opportunity to engineer the band structure [4]. New 
devices based on electrically induced p-n junctions, utilizing 
graphene nanoribbons as the channel material has been 
reported [5]. A graphene-based field-effect-transistor with an 
n+-Si substrate serving as a back gate and a metal serving as a 
top gate, has been fabricated and characterized [6]. The 
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operation of the GNR-FET is accompanied by formation of 
the lateral n-p-n junction in the channel and the energy barrier 
[4]. In the channel, the p-type region is formed under the top 
gate applying sufficiently strong negative bias on the top gate. 
In this case, the GNR-FET channel is partitioned into three 
sections: the source n-section, the p-section under the top gate 
and the drain n-section, thus a lateral n-p-n junction is formed 
in the channel [7]. Literature shows that the current-voltage 
characteristics of GNR-FET, which is fabricated with high 
bandgap GNR, have been analyzed by Ryzhii et al. [4]. 
However, to have high bandgap GNR, the strips of graphene 
should be very narrow since band gap of grapheme 
nanoribbons is inversely related to the width of the graphene 
nanoribbons [8]. But fabricating very narrow strips of 
graphene is challenging because of physical limitations of 
fabrication process and tools. On the other hand, fabricating 
GNR with higher width would be less challenging and more 
feasible. Graphene nanoribbon with higher width has lower 
band gap, still sufficient for switching operation and has 
application in digital and analog circuits [3]. Considering the 
feasibility of fabrication, attention should be given to analyze 
GNR-FET that utilizes GNR with higher width, i.e. low 
bandgap GNR-FET.  However, there are few reports on 
analysis of such low bandgap GNR-FET in the literature. In 
this paper analytical modeling of electrical characteristics of 
low bandgap GNR-FET has been presented which will enrich 
the literature on low bandgap GNR-FET. 

To derive drain current, potential profile in the channel is 
required. So, the analytical formula for potential distribution 
along the channel is developed and analyzed at first and then 
analytical equation of drain current is developed and 
investigated. This work would fill the deficit of analyzing low 
bandgap GNR-FET and serve to improve its performance by 
optimizing the parameters.  

II. DEVICE STRUCTURE 
The device structure of GNR-FET considered in this work 

is shown in Fig.1. The figure shows common source 
configuration. The device has two gates: top gate and back 
gate. Graphene nanoribbons are used as channel. An electron 
channel is formed in the GNR between the ohmic source and 
drain contacts because of the application of positive voltage at 
the back gate. Graphene nanoribbons are shown Fig 2. 

 
 
 
 
 

Analytical Modeling of Electrical Characteristics of 
Low Bandgap Graphene Nanoribbon FET 

Md. Shofiqul Islam, Tanvir Muntasir, Shuvomoy Das Gupta 



 
Analytical Modeling of Electrical Characteristics of Low Bandgap Graphene Nanoribbon FET 

24 
Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

 
Fig. 1 Schematic view of graphene nanoribbon field effect transistor 

(GNR-FET) structure. Here, Vg= top gate voltage, Vb= back gate voltage, 
Vd= drain voltage, Wb= thickness of insulating layer between 

graphene-nanoribbons and back gate, Wg= thickness of insulating layer 
between graphene-nanoribbons and top gate, Lg= length of the top gate. 

 
Fig. 2 Top view of GNR-FET showing graphene nanoribbon strips. 

Here d is the width of graphene strip and ds is the separation between 
two adjacent strips. 

The positive back gate voltage is sufficiently high to induce 
the necessary electron density in the source and drain section. 
The top gate controls the drain current by forming the energy 
barrier for the electrons propagating between source and drain 
contacts.  

The energy gap is electrically induced by the back gate 
voltage [4]. The GNR-FET is based on a patterned graphene 
layer that constitutes a dense array of parallel nanoribbons of 
width d and the spacing between the nanoribbons is ds where 
ds<<d , as shown in Fig. 2. The two edges of nanoribbons are 
connected to conducting pads acting as the transistor source 
and drain. The back gate is a highly conducting substrate. 

III. POTENTIAL DISTRIBUTION 

A. Derivation of the Differential Equation Governing  the 
Potential Distribution 

The active region of GNR-FET region is under the top gate, 
which is defined as : -Lg/2 < x < Lg/2 and –Wb < z < Wg. Here 
the axis x is directed along the nanoribbons, whereas the axis z 
is directed perpendicular to the nanoribbons and the gate 
planes (Fig. 1). Here Lg is the gate length, Wb is the layer 
thickness between GNR layer and back gate, Wg is the layer 

thickness between GNR layer and top gate. The main equation 
governing the spatial distribution of the electric potential )(ϕ  

in the active region of the transistor channel is stated as 
follows [4], [9], [10]. 
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This equation is a consequence of the two-dimensional 
Poisson’s equation in the weak nonlocality approximation 
[9],[10]. Here φ corresponds to the electric potential along the 
channel, e is the charge of electron, ε is dielectric constant 
(relative permittivity) of the insulating material separating the 
channel from the gate, ∑- and ∑+ are electron and hole sheet 
densities in the channel respectively. 

The electron and hole densities in the source and drain 
regions are related to the Fermi energy, which is reckoned 
from the middle of the band gap, as follows [4]. 
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Here, ћ is reduced Plank’s constant, v is the characteristic 
velocity of charge carrier, band gap ∆=2πvћ/d , EF is the 
Fermi energy in the source region with superscript ‘s’ and in 
the drain region with superscript ‘d’, KB is Boltzmann 
constant and T is temperature. It is to note that since band gap 
∆=2πvћ/d , ∆ (bandgap) is reduced for larger d (nanoribbon 
width). 

The following equations can be derived from (3) and (4). 
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Here, K1(∆/(2KBT)) is the modified Bessel function of first 
order. When bandgap (∆) is very low, then ∆/(2KBT) would be 
less than unity, i.e. (∆/(2KBT))<<1; this condition would be 
more strongly valid at high temperature when KBT becomes 
larger. Under the condition of (∆/(2KBT))<<1, the value of 
K1(∆/(2KBT))can be approximated. According to mathematics, 
the asymptotic approximation of Bessel function K1(ζ) for 
ζ<<1 is, 
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                                   (7) 

So, for low bandgap nanoribbons, the value of K1(∆/(2KBT)) 
becomes (2KBT)/∆ . Then equations (5) and (6) take the 
following forms. 
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At the source position potential, φ = 0, therefore, at source 

bb
ss eWV πε 40,0, =∑−∑ +−

;  at the drain position potential, φ=Vd, 
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therefore, at drain 
bdb

dd eWVV πε 4)(0,0, −=∑−∑ +−
[4]. Here the 

quantities with the index ‘0’ are the electron and hole densities 
in the immediate vicinity of the source and drain contacts. 
Under this consideration the following equations can be 
derived. 
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Above two equations give us the value of Fermi energy in 

the source and drain region as follows. 
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Using above values of Fermi energy in the source and drain 
region, the following equations can be found from (8) and (9). 
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The above equations state the relationship of the electron 
and hole density with the electric potential. Using these 
relations in equation (1), we can arrive at the following 
equations which govern the potential distribution under the 
top gate in the active region. 
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B. Spatial Distribution of Potential along the Channel 

Either (16) or (17) may be solved to get the potential (φ) 
equation as the function of x (i.e. position) to obtain the spatial 
distribution of potential. We are solving (16) here. For 
graphene-nanoribbons with lower band gap, the energy 
barrier for electrons propagating between source and drain 
contact, gets reduced. In this situation, the value of electric 
potential (φ) is very low but still drain current is controllable. 
Using the formula, sinh(x+a)=sinh(a) +(cosh(a))x, when x is 
very small, the last term of (16) can be expanded as below. 
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Finally, (16) can be presented in the following form, 
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Solving (18) by using the boundary condition stated (2), we 
get the following equation. 
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We know, corresponding to each potential (φ), the barrier 
for electron is –eφ. The minimum potential will correspond to 
maximum barrier for electrons and maximum barrier will 
decide the current. Therefore, minimum potential is a factor to 
be used to determine the current equation. The minimum 
value of φ exists at x = 0. Putting x =0 in (19), we get the 
following equation of the minimum value of the electric 
potential (φm). 
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Now we are going to investigate the variation of potential 
with device parameters and applied voltages. In this work, the 
analysis has been carried out for the GNR-FET with the 
following parameters fixed as: ε=3.9(for SiO2), d=60 nm, 
v=106 m/s, T=800 K, Wb=100 nm, Wg=30 nm. The other 
parameters Lg, Vg, Vb and Vd were varied to see the effect of 
change of these parameters on electrical characteristics of the 
device.  

Fig. 3 shows an example of the spatial distribution (along 
the channel, i.e., in the x direction) of the electric potential in 
the active region (under the top gate) calculated for a 
GNR-FET with Lg = 300 nm, Vb = 2.0 V, Vd = 0.5 V and 
different values of Vg. We see that the absolute value of 
potential increases with the increase of absolute value of the 
top gate voltage Vg. That is, the barrier for electrons increases 
with increasing Vg .  
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Again, the spatial variation of potential at different drain 
voltages has been calculated with Lg = 300 nm, Vg = - 0.3 V, Vb 

= 2.0 V and presented in Fig. 4. It shows that at the source side 
(at x = - Lg/2), potential level doesn’t change with drain 
voltage, i.e., the barrier for the electrons propagating from the 
source is insensitive to the drain voltage. On the other hand, at 
the drain side (at  x = + Lg/2), potential level increases with  
increasing Vd, i.e., the barrier for the electrons propagating 
from the drain is increasing with increasing Vd. 

The effect of gate length (Lg) on the potential in the channel 
has been investigated. The spatial distribution of potential in 
the channel for different gate lengths is shown in Fig. 5. The 
potential increases with the decrease of gate length at both 
source and drain sides; however, the change at the drain side 
is more. That is, the barrier for the electrons is increasing at 
both source and drain sides with decreasing Lg, however the 
effect at the drain side is stronger than source side.   

 
Fig. 3 Spatial distribution of potential in GNR-FET at different gate 

voltages. 

 
Fig. 4 Spatial distribution of potential in GNR-FET at different drain 

voltages. 

 
Fig. 5 Spatial distribution of potential in GNR-FET for different gate 

lengths. 

IV. CURRENT-VOLTAGE CHARACTERISTICS OF LOW 

BANDGAP GNR-FET 

The following formula for the drain current density can be 
derived considering that the current is caused by the electrons 
overcoming the potential barrier under the top gate [4]. 
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Here, vp is the velocity of the electron with momentum p in 
the lowest sub-band of the nanoribbon conduction band and 

s

m
p  and 

d

m
p  are the momenta of the electrons with energies 

e|φm| and e(|φm|+Vd) respectively. Considering the electron 
and hole gases are non-degenerate, the electron and hole 
distribution functions in the sub-bands with n = 1 is stated 
below [4]. 
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Integration of (21) gives the following equation of drain 
current density. 
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Equation (22) shows the dependence of drain current 
density on different parameters of the device and applied 
voltages. Here φm is given by (20). 

Now let us look at the behaviour of drain current variation 
with different applied voltages. To see the effect of top gate 
voltage on the drain current of a low band gap GNR-FET, 
drain current has been calculated as the function of drain 
voltage for different top gate voltages with certain values of 
back gate voltage and gate length. Fig. 6 presents the results 
calculated for different top gate voltages with back gate 
voltage of 2 V and gate length of 300 nm. We see that drain 
current increases with drain voltage but current becomes 
insensitive to drain voltage after reaching saturation. That is, 
the device exhibits the standard FET characteristics. If the 
magnitude of top gate voltage is increased the drain current 
level is reduced; this is because the barrier for electrons 
increases with increasing top gate voltage, mentioned earlier.  

Similarly, the effect of back gate voltage has been 
estimated by calculating drain current as the function of drain 
voltage for different back gate voltage with certain values of 
top gate voltage and gate length. Fig. 7 shows the drain 
current of a low band gap GNR-FET as a function of the drain 
voltage for different back gate voltages with top gate voltage 
of -1 V and gate length of 300 nm. We see that if the back gate 
voltage is increased the drain current level is increased. That 
is,  the effects of top gate voltage and back gate voltage on the 
drain current are opposite, however, drain current is 
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controllable by gate voltage and hence applicable in digital 
and analog circuits. 

 
Fig. 6 Drain current density versus drain voltage of a low bandgap 

GNR-FET at different top gate voltages, with back gate voltage of 2 V 
and gate length of 300 nm. 

 
Fig. 7 Drain current density versus drain voltage of a low bandgap 

GNR-FET at different back gate voltages, with top gate voltage of -1 V 
and gate length of 300 nm. 

To see the sensitivity of drain current to the top gate 
voltage, saturated drain currents of GNR-FET were calculated 
for different top gate voltages with gate length of 300 nm, 
back gate voltage of 2V, and drain voltage of 0.5V; the results 
are plotted in Fig. 8.  

 
Fig. 8 Saturated drain current versus top gate voltage of a low bandgap 

GNR-FET, with gate length of 300 nm, back gate voltage of 2 V and 
drain voltage of 0.5 V. 

We found that drain current changes with top gate voltage 
at the rate of minimum 5 Am-1V-1 and maximum 18 Am-1V-1. 

Similarly, to see the sensitivity of drain current to back gate 
voltage, saturated drain currents were calculated for different 
back gate voltages with gate length of 300 nm, top gate 
voltage of -2V, and drain voltage of 0.5 V and plotted in Fig. 9. 
We observed that drain current changes with back gate 

voltage at a constant rate 4.5 Am-1V-1, which is less than the 
minimum rate of change of drain current caused by top gate 
voltage. That is, drain current is highly sensitive to top gate 
voltage compared to back gate voltage. 

 
Fig. 9 Saturated drain current versus back gate voltage of a low 

bandgap GNR-FET, with gate length of 300 nm, top gate voltage of -2 V 
and drain voltage of 0.5 V. 

The analytical expressions and results of potential and 
drain current of low bandgap GNR-FET, presented in this 
paper, are similar to those presented by Ryzhii et al. [4], 
however, there is a little difference, this logical because they 
worked with high bandgap FET whereas our work is with low 
bandgap FET; the results of our work are in good agreement 
with the published works in this area. 

V. CONCLUSION 

The analytical modeling of electric potential in the channel 
of low bandgap GNR-FET shows that potential increases with 
the increase of absolute value of top gate voltage, i.e., barrier 
for electrons increases with top gate voltage. The effect of 
drain voltage shows that potential is insensitive to drain 
voltage at the source side but potential increases with drain 
voltage at the drain side. The study of the effect of gate length 
reveals that potential increases at both source and drain sides 
with the decrease of gate length but the effect at the drain side 
is dominant. The analytical modeling of drain current of low 
bandgap GNR-FET shows that drain current versus drain 
voltage exhibits standard FET characteristics. Drain current 
level decreases with the increase of top gate voltage level, 
whereas, drain current level increases with the increase of 
back gate voltage, that is, the effects of top gate voltage and 
back gate voltage on drain current are opposite, however, 
drain current is controllable with gate voltage. Drain current is 
found highly sensitive to top gate voltage compared to back 
gate voltage. This work would be helpful to analyze low 
bandgap GNR-FET and to optimize the device parameters 
and applied voltages to have better performance. 
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