Abstract: This paper presents an effective noise cancellation circuit in acoustic, which is designed, simulated, and measured. The feedforward earphone is with high performance of noise suppression. The main structure consists of a controller, a notch filter, a highpass filter, a microphone, and a speaker. The noise detection microphones pick up sounds and divide them into human voice and lowfrequency noise. After passing through the gaincontrolled filters, the embedded filteredX least meansquare (FxLMS) algorithm will generate antinoise signals with 180° phase difference to ambient noise. Consequently, these antinoise signals will be transformed from digital formats to analog format, and thereby transformed to acoustic signal by the speakers. The generated acoustic signal will cancel the ambient noise, leading to a quiet zone. According to the measured results, it is indicated that a 15dB noise reduction is achieved.
Keywords: Active noise cancellation, lowfrequency noise, feed forward type, feedback type.
References:
1. I. T. Ardekani and W. H. Abdulla, “Active noise control in three dimensions,” IEEE Trans. Control Syst. Technol., 2014. (Accepted)
2. D. C. Chang and F. T. Chu, “Feedforward active noise control with a new variable taplength and stepsize filteredX LMS algorithm,” IEEE Trans. Audio, Speech, Lang. Process., vol. 22, no. 2, pp. 542555, Feb. 2014.
3. D. C. Chang and F. T. Chu, “A new variable taplength and stepsize FxLMS algorithm” IEEE Signal Process. Lett., vol. 22, no. 2, pp. 542555, Feb. 2014.
4. M. Guldenschuh and R. D. Callafon, “Detection of secondarypath irregularities in active noise control headphones,” IEEE Trans. Audio, Speech, Lang. Process., vol. 22, no. 7, pp. 11481157, July 2014.
5. S. Ahmed, M. T. Akhtar, and X. Zhang, “Online acoustic feedback mitigation with improved noisereduction performance in active noise control systems,” IET Signal Processing, vol. 7, Iss. 6, pp. 505514, Aug. 2013.
6. http://www.ams.com.

13

Abstract: Carbon Nanotube Field Effect Transistor (CNFET) is a promising new technology that overcomes several limitations of traditional silicon integrated circuit technology. In recent years, the potential of CNFET for analog circuit applications has been explored. This paper proposes a novel four quadrant analog multiplier design using CNFETs. The simulation based on CNFET technology shows that the proposed multiplier has better features than CMOS Multiplier. Multiplierdivider circuits is using in digital signal processing base on neural networks and communications (amplifiers with variable gain, modulators, detectors and,…).In Most of CMOS analog circuit, transistors are only in triode or saturate regions; till now both regions not used. In this one kind of current mode multiplier divider circuits is intrudused.it is very simple, has low die area and wide range in low voltage. All tough this circuit has no sense to temperature variation and varying parameters.
Keywords: CNT, Analog signal processing, current mode operation, multiplier, reconﬁgurable circuits.
References:
1. R. Harjani, “A lowpower CMOS VGA for 50 Mb/s disk drive read channels,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol. 42, no. 6, pp. 370–376, Jun. 1995.
2. A. Motamed, C. Hwang, and M. Ismail, “A lowvoltage lowpower wide rang CMOS variable gain amplifier,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol. 45, no. 7, pp. 800–811, Jul. 1998.
3. C. Popa, Synthesis of Computational Structures for Analog Signal Processing, New York, USA: SpringerVerlag, 2011.
4. C. Popa, SuperiorOrder CurvatureCorrection Techniques for Voltage References, New York, USA: SpringerVerlag, 2009.
5. C. Popa, “Lowpower CMOS bulkdriven weakinversion accurate currentmode multiplier/divider circuits,” in Proc. Int. Conf. Electr Electron. Eng., 2003, pp. 66–73.
6. C. Popa, “Computational circuits using bulkdriven MOS devices,” in Proc. IEEE EUROCON Conf., May 2009, pp. 246–251.
7. C. Popa, “Logarithmic curvaturecorrected weak inversion CMOS voltage reference with improved performances,” presented at the 11th Int. Workshop on Thermal Investigations on ICs and Systems, Lake Maggiore, Italy, 2005.
8. C. Popa, “A new curvaturecorrected voltage reference based on the weight difference of gatesource voltages for subthresholdoperated MOS transistors,” in Proc. Int. Symp. Circuits Syst., 2003, pp. 585–588.
9. C. C. Chang and S. I. Liu, “Weak inversion fourquadrant multiplier and twoquadrant divider,” Electron. Lett., vol. 34, no. 22, pp. 2079–2080, Oct. 1998.
10. M. Gravati, M. Valle, G. Ferri, N. Guerrini, and N. Reyes, “A novel currentmode very low power analog CMOS four quadrant multiplier,” in Proc. 31st Eur. SolidState Circuits Conf., Sep. 2005, pp. 495–498.
11. C. Popa, “High accuracy CMOS multifunctional structure for analog signal processing,” in Proc. Int. Semicond. Conf., 2009, pp. 427–430.
12. C. Popa, “CMOS multifunctional computational structure with improved performances,” in Proc. 33th Ed. Annu. Semicond. Conf., vol. 2. 2010, pp. 471–474.
13. C. Popa, “Multiplier circuit with improved linearity using FGMOS transistors,” in Proc. Int. Symp. ELMAR 2009, pp. 159–162.
14. Y. H. Kim and S. B. Park, “Fourquadrant CMOS analogue multiplier,” Electron. Lett., vol. 28, no. 7, pp. 649–650, Mar. 1992.
15. Y. K. Seng and S. S. Rofail, “Design and analysis of a +1 V CMOS fourquadrant analogue multiplier,” IEEE Proc. Circuits, Devices Syst., vol. 145, no. 3, pp. 148–154, Jun. 1998.
16. C. Sawigun and J. Mahattanakul, “A 1.5V, wideinput range, high bandwidth CMOS fourquadrant analog multiplier,” in Proc. IEEE Int. Symp. Circuits Syst., May 2008, pp. 2318–2321.
17. C. Sawigun, A. Demosthenous, and D. Pal, “A lowvoltage, lowpower, highlinearity cmos fourquadrant analog multiplier,” in Proc. 18th Eur. Conf. Circuits Theory Design, Aug. 2007, pp. 751–754.
18. C. Popa, “Improved linearity active resistor with controllable negative resistance,” in Proc. IEEE Int. Conf. Integr. Circuits Design Technol., Aug. 2006, pp. 1–4.
19. C. Popa and A. M. Manolescu, “CMOS Differential Structure with Improved Linearity and Increased Frequency Response,” in Proc. Int. Semicond. Conf., vol. 2. Sep.–Oct. 2007, pp. 517–520.
20. C. Popa, “Programmable CMOS active resistor using computational circuits,” in Proc. Int. Semicond. Conf., Oct. 2008, pp. 389–392.
21. C. Popa, “Improved linearity CMOS active resistor based on the mirroring of the ohm law,” in Proc. IEEE 17th Int. Conf. Electron., Circuits, Syst., Dec. 2010, pp. 450–453.
22. A. Naderi, H. Mojarrad, H. Ghasemzadeh, A. Khoei, and K. Hadidi, “Fourquadrant CMOS analog multiplier based on new current squarer circuit with highspeed,” in Proc. IEEE EUROCON Conf., May 2009, pp. 282–287.
23. A. Naderi, A. Khoei, and K. Hadidi, “High speed, low power four quadrant CMOS currentmode multiplier,” in Proc. IEEE Int. Conf. Electron., Circuits Syst., Dec. 2007, pp. 1308–1311.
24. A. M. Manolescu and C. Popa, “A 2.5GHz CMOS mixer with improved linearity,” J. Circuits, Syst. Comput., vol. 20, no. 2, pp. 233– 242, 2010.
25. S. I. Liu and Y. S. Hwang, “CMOS squarer and fourquadrant multiplier,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 42, no. 2, pp. 119–122, Feb. 1995.
26. S. A. Mahmoud, “Low voltage low power wide range fully differential CMOS fourquadrant analog multiplier,” in Proc. 52nd IEEE Int. Midwest Symp. Circuits Syst., Aug. 2009, pp. 130–133.
27. C. Sawigun and W. A. Serdijn, “Ultralowpower, classAB, CMOS four quadrant current multiplier,” Electron. Lett., vol. 45, no. 10, pp. 483–484, May 2009.

47
